Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Table 11 Parameter estimation (standard errors in parentheses) for nonlinear RBAI models using BAL index where competition effect is discriminated as described in Eq. 3

From: Quantifying competition in white spruce (Picea glauca) plantations

 

Parameters

White spruce

Balsam fir

Other conifers

Broadleaves

 

b 30

0.0265 (0.0033)

0.0482 (0.0032)

0.0345 (0.0064)

0.0277 (0.0108)

b 31

−0.2801 (0.1475)

1.8498 (0.4372)

−1.2474 (1.1588)

−0.1874 (0.1004)

b 32

0.0663 (0.0237)

n.s.

0.2176 (0.1598)

0.0281 (0.0104)

b 33

−11.1794 (5.2466)

−5.0813 (0.6626)

−7.4898 (2.0537)

−23.3101 (6.7866)

b 34

1.0504 (0.1562)

1e

1e

1e

b 37

0.3326 (0.0983)

0.1321 (0.0598)

n.s.

n.s.

b 38

1e

1e

n.s.

n.s.

b 39

0.0457 (0.0192)

0.0798 (0.0166)

0.0708 (0.0133)

0.0214 (0.0118)

b 40

1.0826 (0.1293)

1e

1e

1e

Random effects

σ jk a

0.0079

0.0147

0.0196

0.0158

σ k b

0.0081

x

x

x

σ 2c

2.2881

1.2738

0.6273

2.3353

δ d

−1.0795

−0.8811

−0.8486

−1.0156

  1. n.s. not significant parameter (p value >0.05)
  2. aPlot random effect standard deviation
  3. bPlantation random effect standard deviation
  4. cResidual variance
  5. dVariation function parameter estimate
  6. eFixed value to 1 (e.g. not estimated by the regression)