- Original Article
- Open access
- Published:
Rank reversals in tree growth along tree size, competition and climatic gradients for four forest canopy dominant species in Central Spain
Interversion de rangs dans la croissance des arbres en relation avec la taille de l’arbre, la compétition et les gradients climatiques pour quatre espèces forestières dominantes dans la canopée
Annals of Forest Science volume 65, page 605 (2008)
Abstract
-
• Interspecific differences in tree growth patterns with respect to biotic and abiotic factors are key for understanding forest structure and dynamics, and predicting potential changes under climate change.
-
• Repeated observations from the Spanish Forest Inventory (SFI) were used to parameterize maximum likelihood estimators of tree growth as a function of tree size, competition indices and climate for Pinus pinaster, P. sylvestris, Quercus ilex and Q. pyrenaica.
-
• Significant responses to both biotic and abiotic factors were found, with interspecific differences in species performance along competition, temperature and precipitation gradients. Q. ilex was the species most tolerant to competition while P. pinaster was the species most sensitive to climatic variation. Species relative positions shifted along gradients of these factors with rank reversals in species performance along size, competition and climatic gradients.
-
• The results based on average growth matched previous forestry classifications and experimental studies on relative growth rate (RGR).
-
• When examining growth along studied abiotic and biotic gradients, a mismatch was found between species performance ranks as predicted by our models and information derived from previous knowledge. Those discrepancies highlight the relevance of ontogeny and environmental heterogeneity in defining species performance along competition gradients.
Résumé
-
• Les différences interspécifiques dans les modèles de croissance des arbres, pour ce qui concerne les facteurs biotiques et abiotiques, sont des clés pour la compréhension des structures et des dynamiques forestières, et pour prédire les changement potentiels avec le changement climatique.
-
• Des observations répétées de l’Inventaire Forestier Espagnol (SFI) ont été utilisées pour paramétrer les estimateurs de probabilité maximum de croissance des arbres comme une fonction de la taille de l’arbre, des indices de compétition et du climat pour Pinus pinaster, Pinus sylvestris, Quercus ilex et Quercus pyrenaica.
-
• Des réponses significatives aux facteurs biotiques et abiotiques ont été trouvées, avec des différences interspécifiques pour les performances des espèces en relation avec la compétition, les gradients de température et de précipitations. Quercus ilex a été l’espèce la plus tolérante à la compétition tandis que Pinus pinaster a été l’espèce la plus sensible aux variations climatiques. Les positions relatives des espèces ont changé en relation avec les gradients de ces facteurs avec des interversions de rang pour les performances des espèces en relation avec la taille, la compétition et les gradients climatiques.
-
• Les résultats basés sur la moyenne de croissance sont en adéquation avec la classification forestière antérieure et les études expérimentales sur le taux relatif de croissance (RGR).
-
• En examinant la croissance en relations avec les gradients biotiques et abiotiques étudiés, il a été trouvé une disparité entre les rangs de performance des espèces prédits par nos modèles et les informations provenant des connaissances antérieures. Ces divergences soulignent l’importance de l’ontogénie et de l’hétérogénéité environnementale pour la détermination des performances des espèces en relation avec les gradients de compétition.
References
Adame P., Cañellas I., Roig S., and Del Río M., 2006. Modelling dominant height growth and site index curves for rebollo oak (Quercus pyrenaica Willd.). Ann. For. Sci 63: 929–940.
Akaike H., 1992. Information theory and an extension of the maximum likelihood principle. In: Kotz S. and Johnson N. (Eds.), Breakthroughs in statistics. Springer-Verlag, New York, pp. 610–624.
Andreu L., Gutiérrez E., Macías M., Ribas M., Bosch O., and Camarero J.J., 2007. Climate increases regional tree-growth variability in Iberian pine forests. Glob. Change Biol. 13: 804–815.
Baraloto C., Goldberg D.E., and Bonal D., 2005. Performance trade-offs among tropical tree seedlings in contrasting microhabitats. Ecology 86: 2461–2472.
Begon M., Harper J.L., and Townsend C.R., 1996. Ecology: individuals, populations and communities. Blackwell Science Ltd, Oxford, GB.
Bravo-Oviedo A., Sterba H., del Rio M., and Bravo E., 2006. Competition-induced mortality for Mediterranean Pinus pinaster Ait. and P. sylvestris L. For. Ecol. Manage. 222: 88–98.
Broncano M.J., Riba M., and Retana J., 1998. Seed germination and seedling performance or two Mediterranean tree species, holm oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.): a multi-factor experimental approach. Plant Ecol. 138: 17–26.
Burnham K.P. and Anderson D.R., 2002. Model selection and multimodel inference:a practical information-theoretic approach. Springer-Verlag, New York.
Castro-Díez P., Puyravaud J.P., Cornelissen J.H.C., and Villar-Salvador P., 1998. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116: 57–66.
Cavender-Bares J. and Bazzaz F.A., 2000. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124: 8–18.
Cherubini P., Gartner B.L., Tognetti R., Bräker O.U., Schoch W., and Innes J.L., 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev. 78: 119–148.
Chesson P.L., 1985. Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of differents sorts of variability. Theor. Popul. Biol. 28: 263–287.
Coleman J.S., McConnaughay K.D.M., and Ackerly D.D., 1994. Interpreting phenotypic variation in plants. Trends Ecol. Evol. 9: 187–191.
Corcuera L., Camarcro J.J., and Pelegrín E.G., 2002. Funtional groups in Quercus species derived from the analysis of pressure-volume curves. Trees 16: 465–472.
Costa M., Morla C., and Sainz H., 1998. Los bosques ibéricos. Una interpretation geobotánica. Geoplaneta, Barcelona.
Dantin J. and Revenga A., 1940. Una nueva relation climatológica: el índice termopluviométrico. In: Avance al estudio de la aridez en España, Congreso de Zaragoza.
De Martonne E., 1926. L’indice d’aridité. Bull. Assoc. Géogr. Fr. 9: 3–5.
Del Río S. and Penas A., 2006. Potential distribution of semi-deciduous forest in Castile and Leon (Spain) in relation to climatic variations. Plant Ecol. 185: 269–282.
DGCN (Ed.), 2004. Tercer Inventario Forestal National 1997–2006: Comunidad de Madrid. Ministerio de Medio Ambiente, Madrid.
Edwards A.W.F., 1992. Likelihood. John Hopkins University Press, Baltimore, MD.
García-Abril A., Martin-Fernández S., Grande M.A., and Manzaneda J.A., 2007. Stand structure, competition and growth of Scots pine (Pinus sylvestris L.) in a Mediterranean mountainous environment. Ann. For. Sci. 64: 825–830.
Givnish T.J., 1988. Adaptation to sun and shade: a whole-plant perspective. Aust. J. Plant Physiol. 15: 63–92.
Gómez-Aparicio L., Valladares F., Zamora R., 2006. Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiol. 26: 947–958.
Grime J.P., Hunt R., 1975. Relative growth rate: its range and adaptive significance in a local flora. J. Ecol. 63: 393–422.
Hein S. and Dhote J.F., 2006. Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp.) in mixed stands with beech (Fagus sylvatica L.) in northern France. Ann. For. Sci. 63: 457–467.
Hilborn R. and Mangel M., 1997. The ecological detective: confronting models with data. Princeton University Press, New Jersey.
Huston M. and Smith T., 1987. Plant succession: life history and competition. Am. Nat. 130: 168–198.
ICONA (Ed.), 1994. Segundo Inventario Forestal National 1986–1995: Comunidad de Madrid. Ministerio de Medio Ambiente, Madrid.
Kitajima K., 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98: 419–428.
Kitajima K. and Poorter L., 2008. Functional basis for resource niche differentiation by tropical trees. In: Carson W.P. and Schnitzer S.A. (Eds.), Tropical forest community ecology. Blackwell (in press).
Kohyama T., 1994. Size-structure-based models of forest dynamics to interpret population- and community-level mechanisms. J. Plant Res. 107: 107–116.
Lambers H., Chapin F.S. III, and Pons T.L., 1998. Plant physiological ecology. Springer-Verlag, York, PA.
Levin S.A., 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.
Lough J.M., 1997. Regional indices of climate variation: Temperature and rainfall in Queensland, Australia. Int. J. Climatol. 17: 55–66.
Metropolis N., Rusenbluth A.W., Rusenbluth M.N., Teller A.H., and Teller E., 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21: 1087–1092.
Montgomery R., 2004. Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. Tree Physiol. 24: 155–167.
Pacala S.W., Canham C.D., Saponara J., Silander J.A., Kobe R.K.J., and Ribbens E., 1996. Forest models defined by field measurements: estimation, error analysis, and dynamics. Ecol. Monogr. 66: 1–43.
Pausas J.G., Bladé C., Valdecantos A., Seva J.P., Fuentes D., Alloza A., Vilagrosa A., Bautista S., Cortina J., and Vallejo R., 2004. Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for and old practice — a review. Plant Ecol. 171: 209–220.
Pereira J.S., 1994. Gas exchange and growth. In: Schulze E.D. and Caldwell M.M. (Eds.), Ecophysiology of photosynthesis. Springer-Verlag, New York.
Poorter L. and Arets E.J.M.M., 2003. Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis. Plant Ecol. 166: 295–306.
Pukkala T. and Kolström T., 1988. Simulation of the development of Norway spruce stands using a transition matrix. For. Ecol. Manage. 25: 255–267.
Purves D.W., Zavala M.A., Ogle K., Prieto F., and Rey Benayas J.M., 2007. Environmental heterogeneity, bird-mediated directed dispersal, and oak woodland dynamics in Mediterranean Spain. Ecol. Monogr. (in press).
Ruiz de la Torre J., 2001. Árboles y arbustos de la España peninsular. Fundación Conde del Valle de Salazar y Grupo Mundi-prensa, Madrid.
Sack L. and Grubb P.J., 2001. Why do species of woody seedlings change rank in relative growth rate between low and high irradiance? Funct. Ecol. 15: 145–154.
Sánchez-Gómez D., Valladares F., and Zavala M.A., 2006a. Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species. Tree Physiol. 26: 1425–1433.
Sánchez-Gómez D., Zavala M.A., and Valladares F., 2006b. Seedling survival responses to irradiance are differentially influenced by low-water availability in four tree species of the Iberian cool temperate-Mediterranean ecotone. Acta Oecol. 30: 322–332.
Shugart H.H., 1984. A theory of forest dynamics: the ecological implications of forest succession models. Springer-Verlag, New York.
Tilman D., 1982. Resource competition. Princeton University Press, Princeton, NJ.
Varis O., Kajander T., and Lemmela R., 2004. Climate and water: From climate models to water resources management and vice versa. Clim. Change 66: 321–344.
Veneklaas E.J. and Poorter L., 1998. Growth and carbon partitioning of tropical tree seedlings in contrasting light environments. In: Lambers H., Poorter H., and Van Vuuren M.M.I. (Eds.), Inherent variation in plant growth: physiological mechanisms and ecological consequences. Backhuys, Leiden, NL, pp. 337–361.
Villar R., Ruiz-Robleto J., Quero J.L., Poorter H., Valladares F., and Marañón T., 2004. Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. In: Valladares F. (Ed.), Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, EGRAF, S.A., Madrid, pp. 191–227.
Walters M.B., Kruger E.L., and Reich P.B., 1993. Growth, biomass distribution and CO2 exchange of northern hardwood seedling in high and low light: relationships with successional status and shade tolerance. Oecologia 94: 7–16.
Whittaker R.H., 1975. Communities and ecosystems. Macmillan, New York, USA.
Wyckoff P.H. and Clark J.S., 2005. Tree growth prediction using size and exposed crown area. Can. J. For. Res. 35: 13–20.
Zavala M.A. and Zea G.E., 2004. Mechanisms maintaining biodiversity in Mediterranean pine-oak forests: insights from a spatial simulation model. Plant Ecol. 171: 197–207.
Zavala M.A., Espeita J.M., and Retana J., 2000. Constraints and trade-offs in Mediterranean plant communities: the case of Holm oak-Aleppo pine forests. Bot. Rev. 66: 119–149.
Zavala M.A., Angulo O., Bravo de la Parra R., and López-Marcos J.C., 2007. An analytical model of stand dynamics as a function of tree growth, mortality and recruitment: The shade tolerance-stand structure hypothesis revisited. J. Theor. Biol. 244: 440–450.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary material (Tables and Figures) are available online only at www.afs-journal.org
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Sánchez-Gomez, D., Zavala, M.A., Van Schalkwijk, D.B. et al. Rank reversals in tree growth along tree size, competition and climatic gradients for four forest canopy dominant species in Central Spain. Ann. For. Sci. 65, 605 (2008). https://doiorg.publicaciones.saludcastillayleon.es/10.1051/forest:2008040
Received:
Accepted:
Issue Date:
DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1051/forest:2008040