Skip to main content

Table 3 Statistics of the multilinear models for stem volume prediction (m3 ha−1) obtained from different variable selection methods (see Section “2.4”)

From: Mapping stem volume in fast-growing eucalypt plantations: integrating spectral, textural, and temporal remote sensing information with forest inventories and spatial models

  

Calibration

Validation

Method

Selected auxiliary variables

RMSE

R2adj

AICc

RMSE

R2

mod_fw

INT_2_DS, INT_2_MAX, NDVI_2_MIN

20.5

0.88

1519.39

19.1

0.88

mod_bw

RAT_B3_B1, INT_0_MIN, NDVI_2_MIN

31.6

0.72

1666.57

27.3

0.74

mod_sw

MAX_MIN, INT_2_DS, NDVI_2_MIN

21.2

0.87

1531.46

18.5

0.88

mod_spls

MUL_B1_HOM_B1, INT_0_DS, INT_1_MAX, NDVI_2_MAX

18.5

0.90

1487.06

18.1

0.89

mod_sl

RAT_B2_B1, RAT_B3_B2, RAT_B3_B4, MAX_MIN_NDVI, INT_2_MIN

30.2

0.74

1656.22

26.3

0.76

mod_rd

RAT_B3_B2, RAT_B4_B3, INT_2_MIN, MAX_MIN_NDVI

30.5

0.74

1657.00

26.2

0.76

mod_ls

RAT_B1_B2, RAT_B2_B4, RAT_B3_B2, INT_0_DM, INT_0_2, INT_2_MAX

14.0

0.94

1399.54

12.44

0.95

mod_en

RAT_B1_B2, RAT_B2_B4, RAT_B3_B2, RAT_B2_CON_B2, INT_0_2, INT_1_DM, INT_2_MAX

14.2

0.94

1401.06

14.6

0.93

  1. Statistics are given in the table for the calibration dataset and the validation dataset (20% of the data). In bold the model which gave the best statistics. mod_fw: forward stepwise selection, mod_bw: backward stepwise selection, mod_sw: sequential replacement, mod_spls: sparse partial least squares, mod_sl: Spike and Slab Lasso; mod_rd: Ridge; mod_ls: Lasso; mod_en: Elastic Net