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Abstract
& Key message We review the recent findings on the influ-
ence of drought on tree mortality, growth or ecosystem
functioning in tropical rainforests. Drought plays a major
role in shaping tropical rainforests and the responsemech-
anisms are highly diverse and complex. The numerous
gaps identified here require the international scientific
community to combine efforts in order to conduct com-
prehensive studies in tropical rainforests on the three con-
tinents. These results are essential to simulate the future of
these ecosystems under diverse climate scenarios and to
predict the future of the global earth carbon balance.
& Context Tropical rainforest ecosystems are characterized by
high annual rainfall. Nevertheless, rainfall regularly fluctuates
during the year and seasonal soil droughts do occur. Over the
past decades, a number of extreme droughts have hit tropical
rainforests, not only in Amazonia but also in Asia and Africa.
The influence of drought events on tree mortality and growth

or on ecosystem functioning (carbon and water fluxes) in
tropical rainforest ecosystems has been studied intensively,
but the response mechanisms are complex.
& Aims Herein, we review the recent findings related to the
response of tropical forest ecosystems to seasonal and extreme
droughts and the current knowledge about the future of these
ecosystems.
& Results This review emphasizes the progress made over
recent years and the importance of the studies conducted un-
der extreme drought conditions or in through-fall exclusion
experiments in understanding the response of these ecosys-
tems. It also points to the great diversity and complexity of
the response of tropical rainforest ecosystems to drought.
& Conclusion The numerous gaps identified here require the
international scientific community to combine efforts in order
to conduct comprehensive studies in tropical forest regions.
These results are essential to simulate the future of these eco-
systems under diverse climate scenarios and to predict the
future of the global earth carbon balance.
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1 Introduction

Human-induced climate changes have begun to deeply impact
boreal and temperate forest ecosystems (e.g. Ciais et al. 2005),
but whether they are already affecting ecological functions in
tropical rainforests is still an open question. Answering this
question is one of the greatest challenges for scientists study-
ing global change and for community or functional ecologists,
since tropical ecosystems represent 34 % of gross primary
terrestrial productivity (Beer et al. 2010) and play a major role
in carbon and water cycles at the global scale.

Tropical regions are characterized by high annual rainfall
and high evapotranspiration. Nevertheless, a strong seasonal-
ity in precipitation and solar radiation levels (partly deter-
mined by cloud cover) occurs in most tropical regions around
the world. These variations are partly driven by atmospheric
movements related to the latitudinal changes in the inter-
tropical conversion zone; they may lead to soil drought con-
ditions. In environmental science, drought is defined as “a
prolonged period of scanty rainfall”. This definition describes
a “climatic” point of view, related to the amount of precipita-
tion reaching the ground. However, depending on soil type,
soil drainage conditions, evapotranspiration levels and depth
of soil water extraction by roots, a period of scanty rainfall
may—or may not—severely reduce the amount of soil water
available to plants, animals or microbes. In this context, the
literature on the effect of drought on tropical rainforest eco-
systems does not systematically and precisely define what is
meant by “drought”. Therefore, comparison of drought effects
is not so obvious. Nevertheless, three types of drought are
intensively studied in the current literature on tropical
rainforests: seasonal droughts, extreme droughts and experi-
mental droughts:

– Seasonal droughts correspond to seasonal variations in
rainfall at a given site. This definition is based on long-
term observations of precipitation regimes. One can ex-
pect that tropical rainforests are adapted to endure these
seasonal droughts, as species have evolved under these
conditions. Nevertheless, these seasonal variations influ-
ence ecosystem functioning and we thereafter review the
existing knowledge on their response.

– Extreme droughts correspond to a period of abnormally
low rainfall. A number of extreme drought events hit the
tropical regions around the world over the past decades.
Some may be explained by El Niño-Southern Oscillation
(ENSO) events (1982/1983, 1986/1987, 1997/1998) (in
Marengo et al. 2011): they have been associated with a
rise in equatorial ocean surface temperatures and possibly
also with modifications in the movement of the inter-
tropical convergence zone (Li et al. 2006). However, in
Amazonia, other major droughts are clearly unrelated to
ENSO events (1980, 2005, 2010); they are linked to

elevated surface temperatures in the Atlantic Ocean (Ma-
rengo et al. 2008, 2011). These extreme events may differ
in intensity and duration and in the location and number
of epicentres (see for instance the drought in 2005 vs.
2010 as illustrated in Fig. 1; Lewis et al. 2011). They
nevertheless strongly influence the functioning of tropical
rainforests and even endanger them. Thereafter, we use
the existing knowledge on their impact to emphasize the
limits to which these ecosystems may adapt.

– Experimental droughts correspond to through-fall exclu-
sion experiments (Fig. 2). A given percentage of precip-
itation can be excluded from a given zone, and local con-
sequences on soil, tree or ecosystem functioning are mon-
itored. The major drawback of this approach is the surface
of the considered zone: it is usually reduced (usually less
than one or a few hectares). Several experiments have yet
been conducted in wet tropical or subtropical regions. A
list of these experiments with corresponding references is
given in Table 1. As for extreme drought events, these
experiments bring highly valuable information on the
mechanisms involved in the response of these ecosystems
to drought.

Considering these three types of drought and their specific
effects on tropical forest ecosystems, we separate in this review
the effects of recurrent seasonal drought on ecosystem function-
ing to the ones of extreme droughts and experimental ones (cf.
list in Table 2). We thus focus on (i) what can be learnt from
seasonal drying and (ii) what might be the consequences of more
intense and/or more frequent droughts in the future. The latter
question is a burning one as global earth models have made it
possible to simulate an increase in the frequency and intensity of
drought events in tropical regions (e.g. Cox et al. 2004, 2013;
Poulter et al. 2010). The earliest simulations were highly criti-
cized and Steinkamp and Hickler (2015), based on a global
modelling analysis, concluded that there has not been any general
drying trend or increase in extreme mortality events in tropical
forests over the past decades. Yet, at least for the Amazonian
region, global climate models converge to simulate a change in
rainfall regime in this region and drier conditions over the
twenty-first century (Malhi et al. 2009). Our ability to evaluate
the impact of climatic change on the functioning of tropical
rainforest ecosystems in the future will depend on observational,
experimental and modelling approaches which include extreme
drought conditions.

In this context, a considerable effort is being made world-
wide to better understand the effect of drought on carbon and
water cycles in tropical ecosystems at different spatial (forest
stand to region) or temporal (seasonal to yearly) scales. Major
research programmes have been and are being conducted in
Central and South America, Asia and Africa. Within this
framework, numerous new results have been published over
the past 5 years. Hereafter, we provide a comprehensive
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review of these recent studies and discuss whether we are
currently able to evaluate the response of tropical rainforests
to the future climate conditions in these regions. We also
synthetize the existing knowledge on the mechanisms leading
to these effects. Considerable knowledge has been accumulat-
ed on the physiological attributes of tropical rainforest tree
species and their ability to support drought events. A review
of this present knowledge would be highly valuable, but to
keep the scope of this article within acceptable limits, we
concentrate on community- and ecosystem-level responses
to drought, rather than on tree- or species-level responses.
We include 172 papers in this review, among which 88 were
published over the past 5 years (2010–2015).

2 The influence of drought on tropical rainforest
ecosystems

2.1 Tree mortality

As pointed out in Table 2, we were not able to find any infor-
mation in the literature on the seasonal variations in mature
tree mortality in tropical rainforest ecosystems. The main rea-
son is that (i) tree mortality under non-exceptional years ran-
domly occurs among seasons and (ii) seasonal drought-
induced mortality is hard to detect given that mortality is a
punctual and rare phenomenon difficult to catch and model
apart from exceptional events (Aubry-Kientz et al. 2013). This

Fig. 2 The rainfall exclusion
experiment in Caxiuanã National
Forest Reserve, Brazil
(credits L. Rowland)

Fig. 1 a, b Satellite-derived
standardized anomalies for dry
season rainfall for the two most
extensive droughts of the twenty-
first century in Amazonia. c, d
The difference in the 12-month
(October to September)
maximum climatological water
deficit (MCWD) from the decadal
mean (excluding 2005 and 2010),
a measure of drought intensity
that correlates with tree mortality.
a, c The 2005 drought; b, d the
2010 drought. Reproduced from
Lewis et al. (2011) with
authorization from the
corresponding author
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pattern is also consistent with the hypothesis that tropical
rainforests are well-adapted to recurrent seasonal variations
in soil water availability.

In contrast, the extreme drought that occurred in Amazonia
in 2005 clearly resulted in abnormally high tree mortality rates
(Phillips et al. 2009, 2010). Similar major die-off events were
observed in Amazonia following an ENSO event (Williamson
et al. 2000), in Panama (Condit et al. 1995), in tropical
rainforests in China (2009–2010, 75 % increase in mortality
rate; Tan et al. 2013) and in East Kalimantan on Borneo Island
following an ENSO event (10–20% increase in mortality rate;
Slik 2004). Furthermore, in two sites in Amazonia (Caxiuanã
and Tapajós) on long-term monitoring plots with through-fall
exclusion, tree mortality also strongly increased (100%) a few
years after the beginning of the experiment compared to con-
trols (da Costa et al. 2010). In contrast, no clear change in
mortality rates was observed in Central Kalimantan,

Indonesia, after the 1997 drought (Nishimua et al. 2007). In-
creased mortality rates in extreme drought conditions as com-
pared to recurrent seasonal droughts clearly point out to the
limits that these ecosystems are able to support. These extreme
drought events or experimental studies bring extremely valu-
able information to where these ecosystems can be pushed out
by limited water conditions.

Comparing mortality rates after extreme drought events
among sites distributed worldwide is perilous because climate
conditions, species composition, soil conditions, history and
drought severity differ. Nevertheless, Phillips et al. (2010)
concluded that for comparable drought intensities, mortality
rates in Asian tropical forests were stronger than in the Ama-
zon. More intensive research programmes should be imple-
mented so as to confirm such spatial trends and improve eco-
system and earthmodel simulations, particularly in poorly stud-
ied tropical rainforests like the ones in Africa and Asia: several

Table 1 List of through-fall exclusion experiments conducted in wet tropical or subtropical regions

Site Location Climate Period Reference

Daintree rainforest Australia Seasonal wet tropical 2013– http://www.jcu.edu.au/daintree

Caxiuanã National Forest Reserve Brazil Seasonal wet tropical 2002– Fisher et al. (2007)

Tapajós National Forest Brazil Seasonal wet tropical 2000– Nepstad et al. (2002)

Lore Lindu National Park Indonesia Aseasonal wet tropical 2007–2009 Van Straaten et al. (2011)

FazendaVitória Brazil Seasonal wet tropical 1993–1996 Cattânio et al. (2002)

Luquillo Experimental Forest Puerto Rico Aseasonal wet subtropical 2009 Wood and Silver (2012)

Golfo Dulce Forest Reserve Costa Rica Seasonal wet tropical 2007–2008 Cleveland et al. (2010)

Table 2 List of tree- or ecosystem-level parameters included in this synthesis and summary results from the existing knowledge under experimental
droughts, seasonal droughts or extreme drought events

Parameter Summary results from

Experimental drought Seasonal drought Extreme drought

Mortality Increase (especially large trees) Increase (especially large trees)

Tree growth Large trees and high-growth rate
trees negatively impacted

Decrease likely due to change
in C allocation

Reduced or even suppressed

Net ecosystem exchange Contrasted patterns Higher C uptake

Gross primary productivity Moderate decrease Moderate decrease

Ecosystem respiration Moderate decrease Strong decrease

Fluxes of greenhouse
gases other than CO2

Decrease (but very few information)

Carbon balance Contrasted patterns Negate the positive fertilization
effect of atmospheric CO2

Transpiration Decrease through regulation of
stomatal conductance

Decrease through regulation
of stomatal conductance

Shifts in species composition Variability in mortality rates
within phylogeny

Shift to more xeric forest types
Increase in lianas?

Phenology/litterfall/LAI Slight decline in litterfall Leaf renewal driven by solar radiation Decrease in LAI

Remote sensing approaches Green-up in dry season when water is not limited Contrasted patterns

Fire events Increase (especially in logged
and disturbed forests)
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recent programmes funded by the European Commission
(CARBOAFRICA, http://www.carboafrica.net) and by the
National Science Foundation of China are currently making
significant contributions to this much-needed research.

What mechanisms might explain the higher mortality
events following extreme droughts? This question does not
apply solely to tropical forest ecosystems, and a large and
recent literature for various ecosystems around the world sug-
gests that both carbon starvation and hydraulic failure process-
es are involved (e.g. Hartmann et al. 2015). The “carbon star-
vation hypothesis” was developed by McDowell et al. (2008)
(see also the recent paper of McDowell et al. (2013) and
Sevanto et al. 2014) and states that tree mortality occurs main-
ly because reduced photosynthesis during drought periods
limits the accumulation of non-structural carbohydrate com-
pounds in trees. In contrast, hydraulic failure occurs when
xylem vessels are embolized. Several studies on tropical
rainforests have clearly shown strong limitation of water
transported through the xylem during dry periods (e.g.
Sobrado 1997; Lopez et al. 2005; Fisher et al. 2006, 2007),
thus supporting the hydraulic failure hypothesis. In contrast,
Metcalfe et al. (2010b) suggest that the higher mortality in
through-fall exclusion stands could be explained by carbon
starvation. It is now well-known that these processes represent
synergistic responses to drought, but the main issue now is to
understand how these processes are linked. Because the meth-
odologies used to assess the mechanisms causing tree mortal-
ity are complex and highly time-consuming and rely on the
occurrence of major droughts, we still lack enough data to
decipher and understand the origin of tropical tree mortality.
This limits our ability to simulate the future of these
ecosystems.

It is also important to note that several studies have report-
ed that the increase in mortality in both through-fall exclusion
studies (da Costa et al. 2010) and under natural conditions
(Phillips et al. 2009, 2010) was higher for large trees than
for small ones. This pattern was observed in Amazonia and
Borneo (Phillips et al. 2010), but not in Asian forests (Aiba
and Kitayama 2002; Itoh et al. 2012a, b). Higher mortality for
large trees may be related to higher evaporative demand
(higher vapour pressure deficit at the top of the canopy)
(Saatchi et al. 2013) or to a higher risk of hydraulic failure
because of tree height. Some other studies also reported slight-
ly higher mortality rates for trees with low density wood than
for those with higher density wood (Phillips et al. 2010;
Aubry-Kientz et al. 2015). Part of these differences could be
linked to differences in hydraulic failure among trees, as wood
density is linked to xylem structure.

It is also important to remember that extreme mortality
events can also have positive feedbacks on ecosystem dynam-
ics and functioning. Standing dead trees and/or large fallen
trees modify the structure of the canopy, increase canopy
openness and enhance radiation within the canopy and on

the ground…, thus changing local environmental conditions
(Condit et al. 1996; Holmgren et al. 2001; Slik 2004). These
conditions favour the establishment of fast growing trees and
the growth of neighbouring trees, thus locally contributing to
increased photosynthesis and ecosystem carbon uptake. Nev-
ertheless, fast growing trees are characterized by low wood
density and are likely to be more prone to embolism (e.g.
Hacke et al. 2001). In the mid to long term, these changes
may thus negatively influence the carbon balance of these
forests. Whether the recent demonstration by Brienen et al.
(2015) that the biomass dynamics of the Amazon rainforest
over the past three decades show a long-term decreasing trend
of carbon accumulation is consistent with this pattern is a
worthy question.

2.2 Tree growth

Strong seasonal variations in tree growth (diameter increment)
in tropical rainforests have been observed (Tian et al. 1998;
Baker et al. 2003; Nepstad et al. 2004; da Costa et al. 2010;
Stahl et al. 2010; Grogan and Schulze 2012; Wagner et al.
2012, 2013, 2014): a decrease in tree growth is usually ob-
served during drought periods in inventory plots, followed by
a strong increase at the onset of the rainy season.

Extreme droughts reduce tropical forest carbon storage by
decreasing or even suppressing tree growth as compared to
years with lower soil moisture deficits. Phillips et al. (2009)
concluded that the 2005 extreme drought event in Amazonia
halted the long-term increase in aboveground biomass (since
the 1950s) in a significant number of study plots. It may be
expected that water-stress-induced variation in tree growth
response may be dependent to topographic position, as sug-
gested by indirect observations (Silva et al. 2013), but there is
a lack of evidence on that point.

The causes for a decline in tree growth under drought con-
ditions are multiple:

(i) Firstly, a methodological remark must be made. Growth
measurements based on dendrometer bands installed
around tree trunks must be used with caution, since the
bands react to bark thickness and may shrink during dry
periods (because of a drier atmospheric air, e.g. Stahl
et al. 2010). A decrease in trunk circumference during
dry periods, or at least a decrease in circumference incre-
ment, could therefore be due to the shrinkage alone, or to
a “real” decrease in tree growth (cell division in cambial
tissues), or both. This widely usedmethodology has prov-
en efficient to study long-term tree growth, but short-term
variations (at seasonal scale) can lead to misinterpreta-
tion. Chitra-Tarak et al. (2015) have recently published
a novel method to take this bias into account.

(ii) Soil water has been found to be a predominant driver of
seasonal variations in tree growth. Reduced relative
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extractable water during drought periods was found to be
the main environmental factors causing temporal varia-
tions in tree growth in an extensive study on 205 trees in
French Guiana (Wagner et al. 2011). Precipitation and
the duration of the drought season were the best predic-
tors of tree growth variations in an African study
(Ouédraogo et al. 2013). This was also the case in an
overview across tropical regions (Wagner et al. 2014).

(iii) Third, solar radiation and daily minimum air tempera-
ture also contribute to seasonal variations in tree growth,
though to a lesser extent than soil water availability
(Clark et al. 2010; Wagner et al. 2012). The air temper-
ature effect may be related to the limiting effect of high
temperatures on photosynthesis. Interpreting the radia-
tion effect is complex, as radiation may indeed influence
photosynthesis levels. Yet, photosynthesis and growth
are not directly linked: non-structural carbohydrates
stored in trees also contribute to secondary growth, with
various time lags (days to months) (Richardson et al.
2013).

The physiological mechanisms leading to seasonal varia-
tions in tree growth are not fully understood either. Secondary
growth is known to decrease during drought periods when
xylem embolism occurs, resulting in the disruption of water
columns in the trunk and in branches and in the reduction of
water supply to leaves (Tyree and Cochard 1996). The role of
non-structural carbohydrate reserves should be considered
too: these reserves may not only play a major role in
explaining seedling survival during drought periods (Obrien
et al. 2014). They may also influence intra-annual variations
in tree growth (Würth et al. 2005; Richardson et al. 2013).
Doughty et al. (2014) also emphasized the role of carbon
allocation to the different tree compartments (leaf, fruit,
branch and root) to explain seasonal variations in tree growth
in Bolivian tropical rainforests. These authors even concluded
that seasonal shifts in allocation (particularly the trade-off be-
tween above- and belowground compartments) rather than
changes in productivity explain seasonal changes in tree
growth.

Interestingly, drought does not influence growth in trees of
different sizes or with differing growth rates in a similar way:
long-term drought in through-fall exclusion experiments
mainly affected the growth of large trees, whereas the small
trees were barely impacted (da Costa et al. 2010). Similar
trends were observed in natural forests in Amazonia and Af-
rica (Ouédraogo et al. 2013; Phillips et al. 2009; Wagner et al.
2013, 2014). Furthermore, trees with high radial growth rates
under moist conditions showed the strongest relative decrease
under through-fall conditions in Indonesia (Moser et al. 2014).
These effects are not intuitive since reduced soil water avail-
ability necessarily displays a vertical gradient: the top layers
are usually drier than the deeper ones. One could therefore

expect that trees with superficial roots would be affected the
most. Yet, Stahl et al. (2013b) demonstrated that there is no
clear relationship between tree size and soil water extraction
depth during the dry season: small trees are also able to use
water from deep soil layers. Other explanations may have to
do with ontogenetic shifts in drought-adaptive capacities
(Cavender-Bares and Bazzaz 2000) or in hydraulic failure/
carbon allocation strategies.

2.3 Carbon fluxes

An important consequence of higher mortality rates during
broad-scale mortality events is the reduced capacity of impact-
ed forests to absorb CO2 and the huge amounts of carbon that
can be released into the atmosphere as the dead trees
decomposed. This decomposition is slow (one to several de-
cades) and varies widely according to wood density and
branch or trunk size (Hérault et al. 2010). Direct, long-term
measurements of carbon fluxes are recorded at various eddy
flux tower sites in tropical rainforest ecosystems (now in
Amazonia, Africa and Asia) and allow to characterize season-
al variations in carbon fluxes (Fig. 3). Gross primary produc-
tivity (GPP) and ecosystem respiration (ER)—the two CO2

fluxes that characterize the main exchange in carbon between
the ecosystem and the atmosphere—usually decrease during
seasonal droughts (see van der Molen et al. 2011 and Shi et al.
2014 for a review). This decrease is largely explained by
physiological [down-regulation of leaf, trunk or root gas ex-
change; decrease in heterotrophic respiration] or structural
[leaf senescence, leaf shed] changes.

One major result obtained thanks to these studies is that
differential changes in ecosystem photosynthesis (GPP) and
respiration (ER) during dry periods induce large seasonal var-
iations in the ecosystem carbon balance, as determined by net
ecosystem carbon exchange (NEE). NEE is calculated as the
algebraic difference between ER and GPP [the ecosystem is
considered to be a carbon sink when NEE is negative]. Large
discrepancies in seasonal variations in NEE across tropical
rainforests have been found. Some studies showed no clear
effect of seasonal soil drought on NEE (Carswell et al. 2002).
In contrast, other studies showed a decrease in carbon uptake
during dry periods (Williams et al. 1998; Keller et al. 2004),
whereas others showed higher [more negative] NEE values
during dry seasons than during wet seasons (Saleska et al.
2003; Goulden et al. 2004; Baker et al. 2008; Bonal et al.
2008; Yan et al. 2013). At the latter sites, tropical rainforest
ecosystems accumulate more carbon when water is a limiting
factor than during the wet seasons. Some of these discrepan-
cies could be related to the overestimation of ER in early
studies that used the eddy covariance method (see Saleska
et al. 2003; Kruijt et al. 2004). They also arise because of
differences in species composition, soil conditions and partly
also to drought stress levels reached at the sites.
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Under extreme drought conditions, GPP is generally mod-
erately further impacted by these extreme conditions, while
the decrease in ER is usually much stronger than under recur-
rent seasonal droughts (synthetized in Shi et al. 2014). This
suggests that drought severity could be driving the relative
decrease in GPP and ER in these ecosystems. If this is veri-
fied, such patterns should be included in modelling ap-
proaches. A question which merits further attention then
arises: what is the future of the carbon that is not released
during severe dry periods, as compared to moderate dry ones?
Is this carbon directly released to the atmosphere once heavy
rainfalls occur or is it, partly or completely, stored in the
ground?

The following mechanisms have been identified as contrib-
uting to the GPP and ER pattern under seasonal or extreme
droughts:

(i) Tree root access to deep soil layers (Nepstad et al. 1994;
Markewitz et al. 2010; Stahl et al. 2013b) limits the neg-
ative effect of reduced rainfall on photosynthetic activity.
Indeed, though the root biomass of tropical rainforest
trees is concentrated in the upper soil layers (Nepstad
et al. 1994), deep roots still play a crucial role in the water
and carbon cycles in these ecosystems (Nepstad et al.
1994; Stahl et al. 2013b). When soil water becomes

limited in the upper soil layers, deep roots may provide
water to the trees and thus help to prevent, or at least
delay, the down-regulation of carbon and water fluxes.
Reduced rainfall conditions over several weeks or even
months do not always result in an instantaneous lack of
water for deep-rooted trees; delayed drought effects may
be observed. The GPP of deep-rooted trees may therefore
remain high during drought events.

(ii) An increase in GPP could be expected during dry periods
because of the production of new leaves (Restrepo-
Coupe et al. 2013) and increased radiation [reduced
cloud cover] as compared to wet periods (Huete et al.
2006; Brando et al. 2010; Samanta et al. 2012). The
negative effect of reduced solar radiation on tree photo-
synthesis and growth during the wet season was experi-
mentally demonstrated by Graham et al. (2003). This
argument was also used by Condit et al. (2004) to ex-
plain high tree growth rates during the 1997–1998
ENSO event. However, this potential increase may be
counterbalanced to some extent by the negative effect
of drought on photosynthesis for the shallow-rooted trees
when the dry season is moderate, or for most trees if the
decrease in soil water availability is severe. The opposite
trend between these different effects explains the com-
plexity of the seasonal variations in GPP.

(iii) ER is the sum of the CO2 efflux from all the ecosystem
compartments. One can expect a physiologically driven
decrease in cell respiration under drought (see Atkin and
Macherel 2009 for a review), but contrasting results
have been published for tropical rainforest trees. A de-
crease in the CO2 efflux from the leaves, trunks and
coarse woody debris was found in several studies
(Chambers et al. 2000, 2001; Nepstad et al. 2002; Stahl
et al. 2011, 2013a; Rowland et al. 2013, 2014). Howev-
er, others showed slightly higher autotrophic (root and
leaf) CO2 fluxes under dry conditions (Metcalfe et al.
2010a, b; da Costa et al. 2014). Similarly, contrasting
changes in soil CO2 efflux have been found: a decrease
in total soil respiration was observed in numerous stud-
ies (Araujo et al. 2002; Goulden et al. 2004; Hutyra et al.
2007; Bonal et al. 2008). However, though some
through-fall exclusion manipulation experiments con-
firmed this decrease (Sotta et al. 2007; Van Straaten
et al. 2011; Wood and Silver 2012), other studies
showed no effect of water exclusion on heterotrophic
soil respiration (Davidson et al. 2008) and one even
found an increase (total soil respiration; Cleveland
et al. 2010). These discrepancies could be related to
differences in soil type and potential local ecosystem
and carbon cycling adaptations to climatic conditions
(Cleveland et al. 2010). However, the levels of drought
stress reached at the study sites (seasonal vs. extreme)
and the duration of the drought do not seem to

Fig. 3 The 55-m high eddy flux tower set up in 2003 in French Guiana
(Bonal et al. 2008) (credits D. Bonal). Equipment installed on top of the
tower (above the canopy) allows to continuously monitor the gas
exchange (CO2, H2O) between the atmosphere and the considered
ecosystem (around 50–100 ha)
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contribute to explain these differences. These results
underline the complexity of the carbon cycle in tropical
ecosystems submitted to drought and make it difficult to
simulate these response patterns with ecosystem or earth
models.

2.4 Transpiration

Tropical rainforests play a major role in the global climate
system because they exchange huge amounts of water and
energy with the atmosphere. Droughts of varying intensity
modify the hydrological cycle over these ecosystems (Gloor
et al. 2013). When tropical rainforests suffer from seasonal
drought, a decrease in tree- and ecosystem-level evapotrans-
piration is observed (Bonal et al. 2000; Stahl et al. 2013a).
When the drought conditions become harsher, the decrease
in tree transpiration is much stronger, and Fisher et al.
(2007) concluded that tree water use was restricted to 20 %
of that in the control plots in a through-fall exclusion experi-
ment. However, it is important to keep in mind that a decrease
in evapotranspiration during a drought period actually reflects
the combination of two opposite effects. First, high solar ra-
diation during dry periods induces high evaporative demand
[drier and warmer atmospheric air] that should theoretically
lead to higher evapotranspiration rates. As an example, Fisher
et al. (2007) confirmed higher transpiration during the dry
season than during the wet season in Brazil. Second, a de-
crease in soil water availability leads to the down-regulation
of stomatal conductance and thus to lower tree transpiration
(Bonal et al. 2000; Stahl et al. 2013a). This generally observed
decrease in transpiration during droughts suggests a predom-
inant down-regulation of transpiration (reduction in soil-to-
root conductance and water transport) when soil water avail-
ability is strongly limited. Nevertheless, the effect of soil water
drying and strong evaporative demand on stomatal regulation
can be diverging (Tardieu and Simonneau 1998; Tardieu et al.
2010). The complexity of these effects should not be
overlooked when investigating observed patterns, particularly
in modelling analyses.

3 What faces tropical rainforests in the future?

3.1 Species composition

Based on biogeographical, taxonomic or molecular biology
studies, it has now been widely accepted that the tree species
composition in tropical rainforests evolved during the Late
Pleistocene and Holocene periods in conjunction with the oc-
currence of drier and cooler periods (Mayle et al. 2000). Even
though major parts of tropical rainforests may have been re-
markably resilient to dry climatic conditions (Mayle and

Power 2008), the current species composition of these forests
is directly linked to past climate changes (Liu and Colinvaux
1985).

Just as the tropical rainforest communities of today were
shaped by past climate changes, so will tropical species distri-
bution, community composition and diversity be altered if
climate conditions drastically change in the near future (Slik
2004; Engelbrecht et al. 2007; da Costa et al. 2010). Malhi
et al. (2009) simulated that future climate conditions over
Amazonia will be favourable for seasonal forests rather than
for dry tropical forest or dry savannahs. In contrast, some
global vegetation models predict a dramatic shift of the biome
in Amazonia towards dry forests or even woodland savannahs
(Cox et al. 2004; Chave 2014). These predictions are some-
how catastrophic considering the known resilience of these
ecosystems to drought events during the Holocene (Mayle
and Power 2008). Nevertheless, they are supported by a few
observations in tropical rainforests where local species com-
position and community functioning appear to shift over two
to three decades towards more xeric types, if soil water con-
ditions are frequently limited (e.g. Condit 1998; Enquist and
Enquist 2010). This shift is associated with the contrasting
vulnerability of tropical species to drought: for certain taxa,
or size classes, or growth characteristics (fast vs. slow grow-
ing), or successional status (early vs. late stage), some species
are subject to disproportionate mortality. Through-fall exclu-
sion experiments have also revealed a strong variability
among tree species, or tree genii, in their mortality rates (da
Costa et al. 2010; Nepstad et al. 2007). A precise description
of the functional characteristics of tropical tree species and
their physiological and morphological response to drought is
far from being complete. Nevertheless, important screenings
of traits related to drought have been conducted over the past
decades (e.g. Bonal et al. 2000; Engelbrecht et al. 2002, 2007;
Engelbrecht and Kursar 2003; Bartlett et al. 2012; Fortunel
et al. 2014). The vulnerability of tropical tree species to
prolonged droughts diverges and is related to intrinsic differ-
ences in various leaf (e.g. turgor loss point, osmotic potential,
stomatal closure, leaf thickness, specific leaf area, water use
efficiency) and wood biological properties (e.g. xylem vessel
size, wood specific gravity). Further comprehensive studies
on the functional characteristics of tree species in Amazonia,
Africa and Asia are still required.

As an example of shift in species composition, an increase
in lianas, both in terms of individuals and biomass, has been
documented over the past decade in tropical rainforests (see
Schnitzer and Bongers 2011 for an overview). This change in
distribution may have various origins (increasing forest dis-
turbance, changes in land use, forest fragmentation…), but it
has also been suggested that climate changes, along with ex-
treme drought events, could be playing a major role. This
remains to be proven; observations are recent and correlative
changes are under study. Nevertheless, lianas are known to
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benefit, to the detriment of tree species, from drier air (in-
creased evaporative demand) or soils (decreased soil water
availability) (Schnitzer 2005; Schnitzer and Bongers 2011).
Climatic conditions in the future may continue to be
favourable to lianas and allow them to colonize new tropical
rainforests, or at least to accentuate their contribution to eco-
system biomass and productivity.

These functional considerations should not hide one very
important aspect in community ecology: tropical rainforests
are the most diverse forests in the world (at least in terms of
tree species). For a large range of ecosystem services, more
diverse forest ecosystems perform better that pure ones be-
cause of positive interactions among tree species for resource
acquisition (facilitation or niche differentiation mechanisms;
see Cardinale et al. 2012 for a review). Basic theoretical ecol-
ogy also suggests that biodiversity insures ecosystems against
alteration of ecosystem functions, the insurance hypothesis
(Yachi and Loreau 1999). Numerous species with a broad
range of functional characteristics provide greater ecological
overlaps so that if some species are loss, the remaining ones
maintain similar levels of ecosystem functioning. In contrast,
Mouillot et al. (2013) recently demonstrated the major role of
rare species and functional vulnerability in the stability of
ecosystem functioning. Unfortunately, very few studies on
the relationship between biodiversity and ecosystem function-
ing have been conducted in tropical regions and those few
mainly concern experimental plantations (e.g. Potvin and
Gotelli 2008; Forrester 2014). Tropical rainforests with differ-
ent levels of species diversity or with different species com-
position may respond differently to future droughts. A
completely new area in ecological research is needed to an-
swer this question.

3.2 Phenology patterns

Tropical rainforests are composed of species that cover the full
range of leaf phenology patterns (i.e. emergence and fall),
from strict deciduousness to evergreen (Loubry 1994;
Viennois et al. 2013). The leaf area index (LAI) in these eco-
systems remains high all year long and they are therefore
classified as evergreen forests. Nevertheless, inconsistent
seasonal patterns in LAI have been observed in Amazonia.
Malhado et al. (2009) and Wagner et al. (2013) observe no
seasonal change in LAI, whereas several studies conclude to
clear seasonal dynamics in LAI or litterfall (e.g. Juarez et al.
2009). A peak in litterfall is usually observed during the early
stages of the dry season in Amazonia (see Chave et al. 2010
for an overview). The origin of this later pattern remains un-
explained: reduced water availability does not seem to provide
an explanation (Wright and Cornejo 1990; Xiao et al. 2006;
Miranda et al. 2011). Seasonal variations in leaf phenology
were found to be driven by solar irradiance (Wright and van
Schaik 1994; Xiao et al. 2006; Wagner et al. 2013). The peak

in leaf fall coincides with a peak in radiation (Wagner et al.
2013) and is associated with a greater emergence of new
leaves at the onset and during the dry season, a period when
cloud cover is usually low or absent and solar radiation is
therefore strong. Kim et al. (2012) showed that including a
light-controlled phenology module into a terrestrial biosphere
model (ED2 model) strongly improved its ability to capture
seasonal patterns in net ecosystem productivity and litterfall
fluxes. The greater proportion of young leaves during the dry
season could enhance carbon assimilation during the dry sea-
son and at the onset of the wet season, at least as long as
stomatal regulation related to drought stress does not limit
photosynthesis. Indeed, young leaves are characterized by
higher photosynthetic capacity than mature or senescent ones.
However, this argument has been contradicted by studies show-
ing a delayed development of the photosynthetic apparatus in
young tropical rainforest leaves and lower photosynthetic effi-
ciency compared to mature ones (Kursar and Coley 1992).

When considering the influence of extreme drought events,
strong changes in ecosystem leaf area were indeed observed
(Hilker et al. 2014). However, interestingly, long-term
through-fall experiments showed no clear impact of severe
drought on litterfall over the first and second year (Brando
et al. 2008); a slight decline in litterfall compared to control
plots occurred only at the third year. This pattern confirms the
drought resistance of tropical ecosystems when an extreme
event does not last too long, but also the limits to this
resistance.

Optical remote sensing has been widely used over the past
decade to analyse the effect of extreme drought on ecosystem
phenology at various time scales and over large areas. After
the discovery—using satellite measurements—of an unex-
pected canopy green-up during the dry season in Amazonia
during the 2000–2005 period (Huete et al. 2006), Saleska et al.
(2007) detected an increase of this green-up during the ex-
treme dry season in 2005. This green-up was interpreted as
being consistent with the leaf flush usually observed during
dry conditions. However, Samanta et al. (2010)—and more
recently Morton et al. (2014)—argued that these conclusions
were based on irreproducible data and potential artefacts: the
satellite data quality [partly due to cloud cover] may not have
been good enough to support such a strong interpretation. The
authors then concluded that no increase in green-up actually
occurred during extreme drought events, a result consistent
with the decline in greenness (less photosynthesis) during
the 2010 drought event over Amazonia (Xu et al. 2011). How-
ever, an increase in greenness was recently observed by
Maeda et al. (2014) during the dry season, even after
correcting for all potential sun/sensor geometry artefacts.
These results are clearly contradictory and a recent study
tempted to reconcile these diverging views (Hilker et al.
2014). These authors conclude that the new, better quality
satellite data such as those obtained with C5-MODIS
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eliminate such potential artefacts and that the occurrence of
canopy cover green-up during seasonal dry periods, or ex-
treme ones, depends on whether trees can access to deep soil
water. As a result, some parts of the Amazon forest do show
green-up during the dry season, though limited, since, during
the cloudy wet season, the reduced light limits ecosystem
photosynthesis. However, in other parts of the Amazon forest
where tree access to soil water is severely limited, no
greening-up occurs; a decline in greenness may even be ob-
served via satellite. Studying tropical forest phenology with
satellites data is thus feasible, but precisely assessing the im-
pact of severe drought events is not yet fully solved (Hilker
et al. 2014).

3.3 Carbon balance

Considerable literature over the past decade has demonstrated
the positive role of tropical rainforests in capturing large
amounts of atmospheric CO2 (e.g. Baker et al. 2004; Malhi
et al. 2004; Ichii et al. 2005; Lewis et al. 2009; Phillips et al.
2009; Pan et al. 2011). Net aboveground biomass gain has
been confirmed on numerous inventory plots in Amazonia
or Africa: Phillips and Lewis (2014) estimate that the relative
rate of increase is around 0.30 and 0.29 % for Amazonia and
Africa, respectively. Accumulation of carbon in the tropical
terrestrial biosphere strongly contributes to slowing the rate of
increase of CO2 into the atmosphere, thus reducing the green-
house gas effect. Undisturbed tropical rainforests have been
acting as a strong carbon sink in this way for decades.

The question now is whether they will be able to continue
playing this role under future climate, particularly if the oc-
currence of extreme drought events increases. The large mor-
tality event associated with the extreme 2005 drought in Ama-
zonia was equivalent to several decades-worth of carbon ac-
cumulated by the tropical rainforest (Phillips et al. 2009;
Gloor et al. 2012). A recent analysis of atmospheric CO2 mea-
surements concluded that the unburned part of the Amazon
basin [carbon release through fires is deducted in carbon bal-
ance calculations] shifted from a net carbon sink during a wet
year to a carbon-neutral status during an extreme drought year
(i.e. 2010) (Gatti et al. 2014). This shift was explained not
only by changes in air temperature and vapour pressure defi-
cit, but also by reduced soil water availability. An increase in
the frequency of such major drought events in the future is
therefore likely to modify the positive carbon uptake role
played by undisturbed tropical rainforests and may negate
the positive fertilization effect of increased CO2 concentra-
tions (Cox et al. 2013). Yet, serious inconsistencies among
simulation studies can be found: Phillips and Lewis (2014)
reviewed the predictions concerning the carbon balance in
Amazonian and African tropical rainforest ecosystems: in
the future, these ecosystems may act as potential sinks, or
become carbon sources, or have a neutral balance.

Furthermore, a recent pan-tropical study based on 150 years
of tree ring analysis showed that increased atmospheric CO2

concentration induced an increase in intrinsic water use effi-
ciency (the ratio of leaf CO2 assimilation over stomatal con-
ductance) but not an increase in individual tree growth (van
der Sleen et al. 2015).

The uncertainties around these simulations are largely
related both to the structure and the parameterization of
the global circulation vegetation models in use today. As
for phenology patterns, a major challenge for remote sens-
ing or modelling approaches is to reconcile satellite obser-
vations with observed measurements of ecosystem carbon
fluxes and storage. A wide range of ecosystem or earth
models have been elaborated and tested to date (e.g.
Saleska et al. 2003; Ichii et al. 2007; Baker et al. 2008;
Sitch et al. 2008; Fisher et al. 2010; Sakaguchi et al. 2011;
Rowland et al. 2014) and a large body of literature ad-
dresses these issues. Though we will not discuss this liter-
ature in detail here, it is evident that no model is yet able
to encompass all the complex plant- and ecosystem-water
interactions under limiting soil water conditions. Solid im-
provements have been made over the past decade in
matching the more mechanistic models with local observed
data. Powell et al. (2013) perfectly summarizes the current
state-of-the-art: “… terrestrial biosphere models are compe-
tent at predicting plant and ecosystem carbon fluxes under
the present climate, but still require substantial development
for predicting the consequences of severe drought
scenarios.”.

The influence of drought on the exchange of greenhouse
gases other than CO2 between tropical rainforests and the
atmosphere is rather unknown. A few studies conducted over
the past decade showed significant seasonal variations in N2O
or CH4 fluxes (Davidson et al. 2008; Itoh et al. 2012a, b;
Wood and Silver 2012; Yan et al. 2014), but further compre-
hensive studies are required in order to include the effect of
drought on these fluxes in ecosystem or earth models.

3.4 Fires

A major risk of future droughts—and one that may radically
change species composition—is forest fire. Natural forest fires
occasionally occurred in tropical rainforests throughout the
Holocene period (Saldarriaga and West 1986) and contributed
to shape the biogeography of the actual tropical rainforests.

Nevertheless, the major drought events of the past decades
have resulted in an increased number of major forest fires in
tropical rainforests (Cochrane et al. 1999; Alencar et al. 2006;
Aragão et al. 2008). The risk of major fires is also expected to
increase in the twenty-first century (Davidson et al. 2012).
These fires have altered species composition and forest dy-
namics in large areas and will have long-term consequences
on these ecosystems (Brando et al. 2014). Some evidence
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suggests that in tropical rainforests, selective logging (Siegert
et al. 2001), pasture burning (Nepstad et al. 1999) and forest
fragmentation (Cochrane and Barber 2009) lead to an in-
creased susceptibility of the forest canopy to fire. This in-
crease is due to a greater amount of deadwood in these forests,
a lower relative humidity in the understory which increases
the drying speed of the dead wood and a greater penetration of
forests by human activities. For example, opening of the can-
opy by logging generates faster air movements in the canopy
so that the increase in fire-line intensity in logged forests in the
Amazon region is estimated to be twice as in intact forests
(Cochrane 2003). Furthermore, drought-related forest fires
obviously release huge amounts of carbon into the atmosphere
(Grace et al. 2014): at the regional scale, Gatti et al. (2014)
showed that forest fires occurring during the extreme 2010
drought contributed to shift the annual carbon balance of the
Amazon basin from a carbon-neutral status to a strong carbon
release zone (0.48±0.18 Pg of carbon per year). In addition to
the direct effect of fires on carbon balance, carbon losses from
tree mortality in fire-affected forests have been shown to be
cumulative through time, with an increase in large tree mor-
tality three years after the fire event (Barlow et al. 2003).

4 Conclusions and research gaps

As synthetized here, a huge effort has been made over the past
decade to improve our understanding of the response of trop-
ical rainforest ecosystems to seasonal variations in precipita-
tion and to extreme soil water conditions. The existing litera-
ture points to the adaptive capacity of these ecosystems to
support seasonal droughts, but also to the great diversity and
complexity of this response. The recent extreme drought
events that occurred in these regions, the studies conducted
in experimental droughts and the ongoing modelling studies
allowed to greatly improve our knowledge when these eco-
systems are pushed out of the soil water conditions during
recurrent seasonal droughts. We now have better ideas about
the potential limits for the carbon and water cycle and balance
of these ecosystems to support extreme drought conditions.
Our ability to model this response and simulate the potential
consequences of future climate conditions has thus greatly
improved, but large uncertainties, and even some discrepan-
cies, still exist. This effort should thus be continuously sup-
ported, considering the major role played by these ecosystems
at the global scale.

We have identified a number of research gaps to fill in the
current knowledge on the response of these ecosystems to
severe drought conditions. We highlight the most important
below. These gaps require the international scientific commu-
nity to combine efforts in order to conduct comprehensive
studies in tropical rainforests on the three continents. These
results are essential not only to simulate the future of these

ecosystems but also to predict the future of the global earth
carbon balance.

4.1 Taking combined stresses into account

An important point to consider is that the increase in the in-
tensity and frequency of drought events will be accompanied
by other changes in environmental conditions, such as in-
creases in temperatures, vapour pressure deficit or atmospher-
ic CO2 concentrations. This review specifically targeted the
effects of soil drought, but one must not lose sight of the
consequences of other changes and of the potential feedback
controls (Malhi et al. 2009; Cernusak et al. 2013). Niinemets
(2010) concluded that tree response to combined stresses,
though none of them may be extreme separately, can be much
greater than tree response to one single extreme stress. A con-
certed research effort should therefore be made in the near future
to study combined effects. Modelling studies or large-scale ma-
nipulation studies combining soil drought, increase in CO2 con-
centrations and temperature, or combining soil drought and nu-
trient levels should be encouraged in these forests to test the
effect of these combined changes (Cavaleri et al. 2015).

4.2 Relating species-level and ecosystem-level responses
to extreme droughts

Though we must maintain our research efforts, our under-
standing of tropical rainforest species vulnerability to drought
has improved over the past decade. Ecosystem functioning
depends on species composition and ecosystem response to
drought results from each individual species response to
drought. However, these responses do also depend on interac-
tions among species (competition, facilitation), on interactions
between species and their attendant microbial communities
and on changes in species composition. Information about
these interactions and changes is totally lacking.Manipulating
species composition on large scales in these forests seems
unrealistic, but building new models combining mechanistic
and community dynamics approaches should help us under-
stand the effects of climate changes on ecosystem functioning.

4.3 Understanding the role of microbial communities

There is evidence that plant resistance to drought is improved
when fungal communities densely colonize the roots (e.g.
Augé 2000; overview in Lehto and Zwiazek 2011). Yet, it
has been shown that fungal community structure is strongly
linked to tree species composition and tree species richness in
tropical rainforests (Peay et al. 2013). A change in tree species
composition would thus influence fungal communities and
their role in ecosystem functioning. Studies on the role of
fungal communities in ecosystem functioning in tropical
rainforests are very rare. A comprehensive study of these
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interactions is needed in order to understand the impact of
seasonal drought and extreme drought events on belowground
microbial communities and clarify their role in ecosystem
functioning under climate changes.

4.4 Taking repetitive drought events into account

Most observations on the effect of drought on ecosystem func-
tioning, with but a few exceptions, are based on a single
drought event. The impact of repetitive events is still far from
being understood, as is the resilience of tropical ecosystems to
these events. Phillips et al. (2010) pointed out that the extreme
2005 drought in Amazonia was still affecting mortality rates
in these ecosystems 2 years after the drought. How well these
ecosystems can adapt to more frequent severe drought events
[ENSO-related or others] in the future remains unknown. Is
the resistance of tropical rainforest trees weakened by a first
extreme drought event which subsequently increases their vul-
nerability? The recent occurrence of extreme drought events at
low intervals in Amazonia or Asia brings interesting opportu-
nities to study the effect of recurrent drought events in situ.

4.5 Assessing the adaptive potential of tropical rainforest
tree species to droughts

Change in species composition is one way these ecosystems
can naturally adapt to severe drought conditions, but function-
al adaptive mechanisms can also take place. One can wonder
how far such adaptive mechanisms can go and when their
limits will be reached. Tree tolerance to environmental stress-
es increases throughout ontogeny: over the next century, trees
that are young today may well prove able to adapt to upcom-
ing climatic conditions. However, how well tropical tree spe-
cies will adapt to drought over the long-term is largely un-
known. Among the strategies species use to survive drought
conditions, carbon allocation deserves serious studies. A ma-
jor gap exists in our knowledge concerning how carbon allo-
cation patterns change in tropical rainforest trees under vary-
ing environmental conditions, though a few recent studies
have provided interesting results: a clear asynchronism be-
tween leaf production and tree growth was observed (Wagner
et al. 2013). This pattern has recently been linked with a dif-
ferent timing in carbon allocation between compartments
(Malhi et al. 2014; Rowland et al. 2014). The authors also
demonstrated different allocation patterns between the
above- and belowground compartments. As an example,
Rowland et al. (2014) showed a shift in the allocation of pho-
tosynthetic products from foliage and wood in the wet season
to fine roots in the dry season. These allocation patterns are
likely complex since they undoubtedly vary with drought in-
tensity (Brando et al. 2008; Doughty et al. 2014). Comprehen-
sive screenings on species variability in carbon and nitrogen
allocation patterns should be conducted: they should include

the consequences of both recurrent seasonal variations as well
as extreme drought events.

4.6 Improving the ability of ecosystem or earth models
to simulate drought responses

Even though a strong effort has been made in the last decade
to include as many fine-scale functional processes as possible
in mechanistic forest ecosystem models or earth models (e.g.
Fisher et al. 2007; Sakaguchi et al. 2011; De Weirdt et al.
2012; Powell et al. 2013; Rowland et al. 2014), their ability
to simulate the future response of tropical ecosystems to major
drought events remains inadequate. In the context of climate
change, large uncertainties on future carbon stocks or fluxes
persist (Poulter et al. 2010). These authors have identified
research guidelines to improve themodels, but to parameterize
them, more observational and experimental data on the re-
sponse of tropical ecosystems to drought events must be made
available in concert. To improve simulations of climate
change in the twenty-first century and its long-term effect on
the ecosystem carbon balance, we should concentrate on phe-
nology and mortality patterns and on CO2 and other green-
house gas fluxes among the different compartments in the
ecosystem, particularly autotrophic respiration.

4.7 Evaluating the long-term impact of punctual extreme
events

Most studies published so far have addressed the short-term
consequences of extreme droughts; only very few (mainly
experimental through-fall studies) have attempted to evaluate
their long-term impact (Fig. 4). Despite their tremendous val-
ue in the study of response mechanisms, experimental studies
cannot mimic the impact of successive, high-frequency major

Fig. 4 Installation of an automatic weather station in the tropical
rainforest in French Guiana (credits B. Hérault). Long-term monitoring
of environmental conditions in remote forest inventory plots is a
prerequisite to understand the effect of seasonal or extreme drought on
tree and ecosystem functioning and simulate future changes
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droughts. The recent occurrence of several droughts in Ama-
zonia and Asia with a return time lesser than 10 years may not
give the forests time to completely recover between events
and thus offers a major opportunity to evaluate the long-term
impact of punctual extreme events. Remote sensing ap-
proaches provide the excellent tools to analyse these effects.
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