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Abstract
& Key message By combining inventory data and spatially-continuous environmental information, we were able to devel-
op models for Atlantic populations of maritime pine (Pinus pinaster Aiton) in Spain in order to predict suitable habitat
and site index at a spatial resolution of 250 × 250 m.
& Context Currently available, spatially continuous environmental information was used to make reliable predictions about
suitable habitat and forest productivity.
& Aims To develop raster-based distribution and productivity models for Atlantic populations of maritime pine in Spain to predict
current and future suitable habitat and productivity.
& Methods Occurrence data and site index values were obtained from the Third Spanish National Forest Inventory and research
plots, respectively. After testing different algorithms, random forest were selected for modelling the relationships between
maritime pine occurrence, site index and spatially continuous environmental variables.
& Results The overall accuracy of the suitable habitat model was 73%, and climate (mainly thermal properties) and soil physical
properties were the most important variables. The site index model explained 60% of the observed variability, and lithological
properties were the most important variables. A slight increase in site index (0.46–0.51%) and a large increase in suitable habitat
(50–66%) are expected for 2070 under the most pessimistic climate change scenario.
& Conclusion The currently available spatial continuous information enables the development of accurate raster data models for
predicting suitable habitat and site productivity without the need for fieldwork. Climate change is expected to increase the
potentially suitable habitat of Atlantic maritime pine populations in Spain in the coming decades.

Keywords Pinus pinaster Aiton . Site index . Species distribution model . Environmental variables . Random forest . Climate
change

1 Introduction

Maritime pine occupies an environmentally diverse area in the
Western Mediterranean basin and displays a remarkable de-
gree of genetic variation, with multiple subspecies recognized.
It is therefore considered an ecologically versatile species
(Abad Viñas et al. 2016). In the Iberian Peninsula, the species
have traditionally been classified into two groups (Atlantic
maritime pine and Mediterranean maritime pine), although
there is no consensus about its taxonomic status (Alía et al.
1996). These populations differ greatly in growth perfor-
mance: Atlantic maritime pine is more productive and mainly
found in Atlantic climate areas, whereas Mediterranean mar-
itime pine is less productive and found in Mediterranean cli-
mate areas, characterised by lower, irregular precipitation and
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higher temperatures (Alía et al. 1997; Bravo-Oviedo et al.
2011). Atlantic maritime pine populations expanded through-
out Galicia in the seventeenth century (probably from
Portugal) (Ruíz Zorrilla 1980) and are now widely distributed
in NWSpain (in the Autonomous Communities of Galicia and
Asturias and the province of León). The species occupies an
area of 433,754 ha, which represents 18.2% of the total forest
area (MAPA 2019), and it is the most important coniferous
tree species in NW Spain in terms of both surface cover and
wood production. The average volume harvested in the period
2005–2015 reached 2,649,249 m3 year−1, which represents
31.9% of the total volume harvested annually in the region
and 19.7% of the same in Spain (MAPA 2019). The species
grows in even-aged stands, derived from plantations or natural
regeneration after clear cutting or wildfire, and it has tradition-
ally been managed for sawn timber or pulp production. The
rotation age is usually between 30 and 40 years, although
older stands are common as a result of a lack of adequate
management. The area occupied by these maritime pine pop-
ulations has increased in recent decades because the species
has been widely used in afforestation programs (Álvarez-
Álvarez et al. 2011).

Because of the economic importance of maritime pine,
forest managers and practitioners must be able to identify
the best quality sites for afforestation. It is widely accepted
that the growth and yield of even-aged stands are largely de-
termined by the productive capacity of the growing site, in-
cluding many variables that collectively determine the site
quality (e.g. Clutter et al. 1983; Gadow and Bredemkamp
1992; Vanclay 1994). Evaluation of site quality is desirable
for volume production. However, it is seldom feasible to use
direct measures of volume productivity because the volume
attained by a stand at any given age may be strongly affected
by factors other than site quality (e.g. stand density, cultural
practices, pests and diseases), and historical records of yields
from forested sites are limited (Clutter et al. 1983; Burkhart
and Tomé 2012). Early empirical evidence showed that, for
most species, good quality sites correspond to areas where
height growth rates are high (Clutter et al. 1983; Skovsgaard
and Vanclay 2008), and therefore height growth of dominant
trees has commonly been used as an indirect measure of site
quality (Clutter et al. 1983). Moreover, height growth is close-
ly correlated with volume and is independent of stocking over
quite a wide range of stand densities (Burkhart and Tomé
2012). In this regard, site index, defined as the average height
of the dominant portion of the stand at a reference stand age, is
one of the most common indirect measures of forest site pro-
ductivity used worldwide for even-aged stands (Weiskittel
et al. 2011a). Although site index enables determination of
maximum of the mean annual increment (MAImax) in vol-
ume and rotation age (Barrio Anta and Diéguez-Aranda
2005), conversion of the site index measure for direct estima-
tion of these variables requires the use of growth and yield

models. The maximum mean annual volume increment per
hectare is considered the most appropriate direct measure of
productivity because it is directly related to the wood volume
that can be obtained in a given site (Skovsgaard and Vanclay
2008; Latta et al. 2009).

Site index can be estimated with reasonable accuracy at
local scale, although this is usually expensive (stand dominant
height and stand age must be determined) and requires the
species to be present. These shortcomings can be resolved
by constructing methods of estimating this index based only
on environmental variables. Many studies have attempted to
relate site index to environmental factors by using parametric
approaches (e.g. Fontes et al. 2003; Romanyà and Vallejo
2004), non-parametric approaches (e.g. McKenney and
Pedlar 2003; Albert and Schmidt 2010) or both (e.g. Wang
et al. 2005; Aertsen et al. 2010; Álvarez-Álvarez et al. 2011).
However, many of these published studies included physical
or chemical soil-related variables that can only be determined
by using expensive analytical techniques, and the models de-
veloped are therefore of little practical use. The current avail-
ability of remote sensing data and spatially interpolated
gridded climate and soil data enable us to obtain spatially
continuous environmental information, thus allowing site in-
dex to be estimated at landscape scale (Bontemps and
Bouriaud 2014) without the need for fieldwork. Moreover,
this spatially explicit information can be used in further re-
search (Parresol et al. 2017). These types of raster models
should be used to integrate the Spanish National Forest
Inventory data and the first Nationwide Airborne Laser
Scanning data to carry out yield predictions, as recently noted
by Novo-Fernández et al. (2019).

At this point, the remaining challenge is to establish an
adequate framework for depicting or mapping site index or
site productivity for particular species throughout an area.
Suitable habitat provides an appropriate reference framework
for depicting relevant ecological information about a species.
Suitable habitat can be defined as the area within a region
where a species actually or potentially occurs. This area is
determined by the complex relationships between numerous
environmental variables, for which ecological researchers
have commonly used empirical models relating species occur-
rence to environmental predictors. These models are known as
Species DistributionModels (Guisan and Zimmermann 2000).

Climate-related variables are often key factors driving spe-
cies distribution and productivity, and shifts in these variables
are therefore expected to strongly affect species distribution,
abundance and growth. Accelerated climate change is already
affecting Southern Europe, and more dramatic implications
are expected in the future with a predicted increased in mean
annual temperature of 4–6 °C and a decrease in mean annual
precipitation of 15–20% for 2080 in the worst possible sce-
nario (EEA 2017). This change will contribute to restricting or
expanding the geographic distribution of particular species
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(e.g. Monzón et al. 2011; Bellard et al. 2012), and the impact
will depend on the adaptability of different species to climate
change (Vennetier et al. 2007). Forests are particularly sensi-
tive to this type of change, because the long lifespan of trees
does not allow for rapid adaptation to environmental changes
(Davis et al. 2005).

Species distribution models that include climatic variables
can be used to predict where the species might move to, or be
able to persist under suitable conditions, given a particular
climate change scenario. In the sameway, productivitymodels
that include climate variables can predict future shifts in site
productivity. Projecting species distribution and productivity
models for climate change scenarios can thus provide infor-
mation that will help decision-makers develop and implement
appropriate afforestation programmes.

The main aim of this study was to develop raster-based
distribution and productivity models for Atlantic populations
of maritime pine in Spain in order to predict the current and
future suitable habitat and productivity. For this purpose, the
following secondary goals were identified as follows: (i) to
investigate the environmental factors determining the current
suitable habitat and site productivity, (ii) to develop species
distribution and productivity models based on current envi-
ronmental variables, (iii) to generate spatially continuous
maps of these environmental characteristics, and (iv) to make
future projections of the models and maps based on different
climate change scenarios.

2 Materials and methods

2.1 Study area

The study area comprises region of provenance 1 (north-west)
for maritime pine in Spain (Alía et al. 2009), including the
Autonomous Community of Galicia and parts of Asturias and
the province of León (Fig. 1). In this region of provenance, the
climate is characterized as Atlantic, and precipitation is fairly
uniformly distributed throughout the year. In coastal areas,
precipitation reaches an annual average of 1342 mm, with an
average summer precipitation of 132 mm. Summer drought,
when it occurs, lasts for less than 1 month. The thermal regime
is characterized by mild temperatures with an annual average
of 12.9 °C and a low average daily thermal oscillation
(10.8 °C). In inland areas, precipitation is lower (1031 mm
of annual average and 100 mm of summer period) and daily
thermal oscillation (14.5 °C) is higher. Summer drought lasts
between 1 and 2 months in these areas (Alía et al. 2009). From
a geological point of view, granitic rocks and sediments from
the lower Palaeozoic, with lithofacies of sandstones, quartzites
and slates, are predominant. The soils have a loamy to sandy
loam texture, a low retention capacity and are strongly acidic
(Alía et al. 1996).

2.2 Data collection

Four different types of data were considered in this study: (i)
site index data obtained from research plots, (ii) maritime pine
occurrence data obtained from the Third Spanish National
Forest Inventory (SNFI3) and from research plots established
for this purpose, (iii) data on current environmental variables,
and (iv) future climatic data projections for different climate
change scenarios.

2.2.1 Site index data

Site index data were obtained from a network of 85 research
plots established by our research team in pure, even-aged
stands of maritime pine. The plots were established through-
out the current distribution area of the populations of Atlantic
maritime pine in north-western Spain, with the aim of cover-
ing a wide range of ages, stand densities and site qualities. The
plot size ranged from 700 to 1200 m2, in order to include a
minimum of 30 trees. In each plot, diameter at breast height
and total height of all trees were measured. Stand age was
obtained from the plantation date (if available) or as the aver-
age age of six representative selected trees. Dominant height
was determined as the average height of the 100 largest-
diameter trees per hectare. Site index (dominant height at a
reference age of 20 years) was estimated from the algebraic
difference form equations developed for Galicia (Álvarez-
González et al. 2005) and Asturias (Álvarez-Álvarez et al.
2011). The summary statistics of the main stand variables of
the research plots used for modelling site index from environ-
mental variables are shown in Table 1.

2.2.2 Occurrence data

Information on maritime pine occurrence was drawn from the
Third Spanish National Forest Inventory (SNFI3) (DGCN
2006). SNFI plots are placed at the nodes of a 1 km UTM
square grid, and a total of 7293 SNFI3 plots were located
within the study area. These plots with Atlantic populations
of maritime pine presence/absence data were imported to a
GIS database (ArcGIS 9.3, ESRI, Redlands, CA, USA), with
presence defined as the occurrence of at least one live mari-
time pine tree within each SNFI3 plot.

2.2.3 Data on current environmental variables

Environmental variables related to climate, topography and
soil characteristics were included as potential predictors in
the species distribution and productivity models. In total, a
set of 50 spatial environmental variables were available for
analysis (Table 2). Topographic variables were based on a
30 m resolution digital elevation model provided by the
Spanish National Plan for Aerial Orthophotography (PNOA;
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http://www.pnoa.ign.es). The System for Automated
Geoscientific Analyses (SAGA; Conrad et al. 2015) and
Geographical Information System (GIS) software (version 3.
0.0) were used to obtain eight topographic variables.
Elevation was ruled out as an independent variable as it is

strongly correlated with climatic variables such as mean
temperature and annual precipitation.

Gridded data for 19 climate variables with a 30-arc sec
resolution (approximate 800 m) were obtained from
WorldClim (Hijmans et al. 2005) by means of interpolations
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Fig. 1 Location of the study area (region of provenance 1) within the
maritime pine distribution area in Northern Iberian Peninsula and
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Inventory (SNFI3) where the presence of maritime pine was detected
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Table 1 Summary statistics for stand variables in the 85 research plots used to develop the productivity model

Number of trees (ha−1) Basal area (m2 ha−1) Quadratic mean
diameter (cm)

Dominant height (m) Age (years) 1Site index (m)

Minimum 377.78 12.77 10.32 7.25 12.00 7.80

Maximum 2580.00 76.20 41.50 26.96 61.50 19.66

Mean 1183.10 37.46 21.34 14.82 25.85 12.80

Standard deviation 485.65 14.79 7.61 4.94 13.14 2.44

1Dominant height at a reference age of 20 years
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methods using the ANUSPLIN package (Booth et al. 2014). In
addition, 12 soil variables were compiled from the
SoilGrids250m (Hengl et al. 2017), which provides a collection
of updatable global predictions for soil properties at 250 m
spatial resolution based on machine learning algorithms. Soil
type and group were compiled from the European soil database

v2.0 scale 1:1000,000. Lithostratigraphic type and permeability
were obtained from the Spanish Stratigraphic Map scale
1:200,000, and Geology from the Spanish Geological
Map scale 1:1000,000 (IGME 2015a, b). All climate, soil
and topography variable raster grids were resampled at
250 m resolution.

Table 2 Environmental variables considered potential predictors for the distribution and productivity models

Type Abbreviation Description Unit Source

Terrain SLP Slope based on a digital elevation model % PNOA Lidar
ASP Aspect based on a digital elevation model °
CU Curvature
PLC Plan curvature
PRC Profile curvature
TSI Terrain shape index
WI Wetness index
DHN Euclidean distance to nearest hydrographic network (m m

Climate BIO1 Annual mean temperature °C WorldClim
BIO2 Mean diurnal range (Mean of monthly (max temp - min temp)) °C
BIO3 Isothermality (BIO2/ BIO7) (*100) %
BIO4 Temperature seasonality (standard deviation *100) %
BIO5 Max temperature of warmest month °C
BIO6 Min temperature of coldest month °C
BIO7 Temperature annual range (BIO5- BIO6) °C
BIO8 Mean temperature of wettest quarter °C
BIO9 Mean temperature of driest quarter °C
BIO10 Mean temperature of warmest quarter °C
BIO11 Mean temperature of coldest quarter °C
BIO12 Annual precipitation mm
BIO13 Precipitation of wettest month mm
BIO14 Precipitation of driest month mm
BIO15 Precipitation seasonality (coef. of variation) %
BIO16 Precipitation of wettest quarter mm
BIO17 Precipitation of driest quarter mm
BIO18 Precipitation of warmest quarter mm
BIO19 Precipitation of coldest quarter mm
Sr_ss Solar radiation in summer solstice kJ m2 year−1 PNOA Lidar
Sr_eq Solar radiation in equinox kJ m2 year−1

Sr_ws Solar radiation in winter solstice kJ m2 year−1

Soil SC Soil organic carbon content mG/ha SoilGrids250
pH_H2O Soil pH in H2O solution
pH_KCl Soil pH in KCl solution
BD Bulk density of fine earth fraction (< 2 mm) kg m−3

CLAY Percentage of clay in soil Weight %
SAND Percentage of sand in soil Weight %
SILT Percentage of silt in soil Weight %
CF Coarse fragments Volumetric %
CEC Cation-exchange capacity cmol + kg−1

DB Absolute depth to bedrock cm
DB200 Depth to bedrock (R horizon) up to 200 cm cm
R Probability of occurrence of R horizon within 200 cm %
SC_fef Soil organic carbon content (fine earth fraction) g
Geo_units Geochronological units SGM
Geo_lit_units Lithological units
LIT_dco Hydrogeology SSM
LIT_dlo Lithostratigraphy
LIT_per Lithostratigraphy permeability
WRB-FULL Full soil code of the Soil typological units from the

World Reference Base (WRB) for soil resources
ESDB

WRB-LEV1 Soil reference group of the soil typological units from
the World Reference Base (WRB) for Soil Resources

SGM Spanish geological map (1:1000,000), SSM Spanish stratigraphic map (1:200,000), ESDB European soil database v2.0 (1:1000,000)
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2.2.4 Climate data projections

Climate data projections are required for predicting future
suitable habitat and site productivity under different climate
change scenarios. We used the global climate model for the
years 2050 and 2070 based on the CMIP5 model of the 5th
assessment report of the Intergovernmental Panel on Climate
Change (http://www.worldclim.org/CMIP5). Bioclimatic
predictions for two opposing scenarios of representative
concentration pathways (RCP) were considered. The first
“moderate scenario” (RCP 4.5) assumes a CO2 concentration
of 650 ppm and a 1.0‑2.6 °C increase by 2100, whereas the
second “pessimistic scenario” (RCP 8.5) considers a CO2 con-
centration of 1350 ppm and a 2.6–4.8 °C increase by 2100
(van Vuuren et al. 2011; IPCC 2013; Harris et al. 2014;
Dyderski et al. 2017).

2.3 Modelling species distribution and site
productivity from environmental variables

2.3.1 Modelling techniques

To date, parametric regression techniques such as multiple
linear regression and generalized linear modelling have
been widely used to explore critical factors related to spe-
cies occurrence (e.g. Roces-Díaz et al. 2015; Shirk et al.
2018) and forest productivity (e.g. Sánchez-Rodríguez
et al. 2002; Aertsen et al. 2010; Sharma et al. 2012).
However, traditional parametric regression techniques
may not be adequate for analysis involving a potentially
large number of predictors with complex interactions
(Guisan and Zimmermann 2000; Prasad et al. 2006; Jiang
et al. 2015). Advances in computer-assisted statistical anal-
ysis techniques simplify the implementation of non-
parametric statistical models (Weiskittel et al. 2011b;
Sabatia and Burkhart 2014; Jiang et al. 2015; Huang
et al. 2017), generalized additive models (Aertsen et al.
2010; Brandl et al. 2014; Bjelanovic et al. 2018) and arti-
ficial neural networks (Drummond et al. 2003; Williams
et al. 2009; Cosenza et al. 2015). We first carried out a
preliminary analysis testing several algorithms implement-
ed in the freely available BIOMOD2 R package (Thuiller
et al. 2016) for fitting the species distribution model, and
we used WEKA open source software (Hall et al. 2009) for
fitting the site index model. Once the best performing al-
gorithms were selected, they were fitted by WEKA for
further assessment, evaluation and implementation. To se-
lect the potentially most important regressor variables, a
wrapper method was used to select the subsample of vari-
ables as this usually produces the best results (Zhiwei and
Xinghua 2010). The method selects the subsample of vari-
ables by using a learning algorithm as part of the evaluation
function.

2.3.2 Model assessment and evaluation

The k-fold cross-validation approach was used to test the ac-
curacy of the algorithms. In this process, the data set is divided
into k subsets and each time the model is applied, one of the
subsets is used as the test set and the other k-1 subsets form the
training data set. This provides a good indication of how well
the classifier will perform on unseen data. We used k = 10 and
applied the algorithm several times and computed various
standard metrics to assess model performance. In order to
assess the accuracy of the species distribution model predic-
tions, we used a confusion matrix that reflects the four possi-
ble ways that a sample point can be classified. Values of this
matrix were used to calculate several commonly used metrics
(Shirk et al. 2018): (i) the overall accuracy, (ii) sensitivity, (iii)
specificity, (iv) the true skill statistic,(v) Cohen’s kappa; and
(vi) the area under the ROC curve. The algorithm reports a
probability of presence (PoP) of maritime pine as an output
variable. A binary model is needed in order to calculate
Cohen’s kappa and overall accuracy, and a threshold PoP
was therefore selected to convert PoP to binary presence–
absence outputs. To select this threshold (PoPthreshold), we
used the average value of the PoP that maximized the sum
of sensitivity and specificity and the PoP that minimized the
difference between the absolute values of sensitivity and
specificity.

To evaluate site index predictions by the fitted algorithm,
the pseudo-coefficient of determination (R2) (Ryan 1997), the
mean absolute error (MAE) and the root mean squared error
(RMSE) were used. For implementation of machine learning
algorithms, WEKA has an embedded feature ranking tech-
nique called the variable importance measure (VIM), which
we used as a tool to guide selection of predictors for inclusion
in the final model. To ensure that values of variable impor-
tance were expressed on comparable scales, the VIM values
were normalized so that they added up to a unitary value
(normalized importance), and they were also expressed in rel-
ative terms: relative importance = (VIM−VIMmin)/
(VIMmax−VIMmin). We then constructed the marginal re-
sponse curves in order to explore the relationships between
the response and each of important predictor variables. These
curves represent the predicted PoP of the species or the site
index prediction value (y-axis) as a function of a single envi-
ronmental variable (x-axis), when all other explanatory vari-
ables were held constant at their mean values.

2.3.3 Making predictions of current and future suitable
habitat and site productivity

The models finally selected were applied to the current envi-
ronmental spatial variables (resampled to a 250 m × 250 m
resolution) to generate spatially continuous maps. As previ-
ously pointed out, the maximum mean annual volume
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increment per hectare is a practical direct measure of produc-
tivity. To convert site index to this direct measure of produc-
tivity in the absence of field data, the plantation density and
the density regulation regime must be established. For the
former, we considered plantation densities of 900 to 1400
stems ha−1, as 1100 stems ha−1 is a common value in the area
(Rodríguez Soalleiro andMadrigal Collazo, 2008), and for the
latter we consider that only the competition-related mortality
and random events (and not thinning management) will drive
the density evolution of the stand. Under these assumptions,
we carried out the following steps to determine MAImax: (i)
we generated a database of site index values from the mini-
mum and maximum observed values in the plot data at 0.5 m
intervals; (ii) we applied dynamic growth and yield models
(Arias-Rodil et al. 2016; Diéguez-Aranda et al. 2009) to this
database considering initial plantation densities of between
900 and 1400 stems ha−1 at 50 stems ha−1 intervals; (iii) we
determined the MAImax and the associated rotation age for
each simulation; and (iv) we developed a parametric model
for estimating MAImax as a function of site index and planta-
tion density. We also fitted an additional model for estimating
the optimal rotation age as a function of MAImax.

In addition, we also projected species distribution and pro-
ductivity models onto spatial projections at 250m resolution of
the environmental variables reflecting the two climate change
scenarios, i.e. moderate (RCP 4.5) and pessimistic (RCP 8.5).

For both the current and future scenarios, we used
FRAGSTATS 4.2 (McGarigal et al. 2016) to quantify the area
of habitat and degree of habitat fragmentation based on the
binary model. We use three indicators to quantify suitable
habitat surface: (i) total area, (ii) mean patch area and (iii)
largest patch index (the percentage of the landscape
encompassed by the largest patch). The fragmentation was
assessed with the aggregation index, which equals 0 when
suitable habitat is maximally disaggregated into single grid
cell patches disconnected from all other patches and increases
to 1 as suitable habitat is increasingly aggregated into a single,
compact patch. We also quantified the degree of change for
each future scenario relative to the current situation, classify-
ing habitat as either gained, maintained or lost. The main
methodological steps are graphically summarized in Fig. 2.

3 Results

3.1 Modelling technique selected

As a result of the preliminary analysis of different modelling
techniques (Table 3), the non-parametric random forest en-
semble learning method was selected as the best option for
fitting species distribution and productivity models. Random
forest is a widely used non-parametric classification and re-
gression approach that consists of constructing hundreds of

decision trees from randomized subsets of predicted and pre-
dictor variables (Breiman 2001). The success of the technique
is based on the use of numerous trees, developed with differ-
ent independent variables that are randomly selected from the
complete original set of features (e.g. Deschamps et al. 2012;
Wang et al. 2016).

3.2 Species distribution model: current and future
suitable habitat

Of the 7378 sites surveyed, maritime pine was present at 3760
sites and absent from 3618. The elevations of the sites where
the trees were present ranged from 0 m to 1327 m (mean
elevation = 315m) and the latitudinal distribution ranged from
43.73 to 41.82 degrees north (mean latitude = 42.82 degrees
north). As a result of the feature selection process, 11 of the 50
variables were retained as an optimal subset size for the ran-
dom forest method, showing that the current distribution of
the species is driven by many interrelated environmental var-
iables (Table 4). According to the evaluation data set, the
model performance was rather good (Table 5): area under
the ROC curve = 0.81, overall accuracy = 0.73, true skill sta-
tistic = 0.46, kappa = 0.46. The true positive rate (sensitivity)
was 0.76 and the true negative rate (specificity) was 0.69.

According to the normalized importance score, five climate
variables together contributed most (52.23%) to explaining
the suitable habitat for Atlantic populations of maritime pine,
with thermal variables contributing 33.39% and pluviometry
variables the remaining 18.84%. Five soil variables contribut-
ing 39.82% to the final model were also retained; physically
related variables made up 32.31% of this contribution and a
soil type classification variable accounted for the remaining
7.51%.

The functional forms of the marginal response plots of the
six variables of greatest relative importance were increasing or
decreasing curves (Fig. 3). The annual mean temperature
(BIO1) was the most important variable, with the probability
of presence increasing from 50% (mean annual temperature of
10 °C) to almost 100% at a mean annual temperature of 16 °C.
The highest mean annual temperatures are reached in south-
west coastal areas, in the basin of the main rivers and in the
interior plane areas. The next two most important variables
(BIO3 and BIO4) refer to the variability in temperature and
both indicate that this species prefers rather stable tempera-
tures, as in the coastal areas and in lower altitude river basins
and plates. The fourth and fifth most important variables were
the precipitation in the wettest quarter (BIO16) and seasonal-
ity of precipitation (BIO15). The former indicates that Atlantic
populations of maritime pine prefer areas with a winter pre-
cipitation of around 500–550 mm, and the latter indicates
preference for areas with high monthly precipitation variation,
which corresponds to the south-west part of the study region
where precipitation is lowest in the summer period. The sixth
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most important variable was the soil bulk density, indicating
that the presence of maritime pine was more likely when soil
bulk density increases from 1150 and 1500 kg/m3. In accor-
dance with the results obtained with the species distribution
model, the total surface area of the current suitable habitat is
1.86 million hectares (Table 6).

Figure 4 shows the distribution of the five most important
climatic variables (for an accumulated normalized importance
value of up to 60%) for the current conditions and the future
climatic scenarios for the 2050 and 2070 horizons. The future
projections reveal that the main climatic variables will shift
under both climatic scenarios, but that the greatest change will
occur under the more pessimistic scenario (RCP 8.5) regard-
less of the temporal horizon. Two temperature variables, i.e.
BIO1 (mean annual temperature) and BIO4 (temperature sea-
sonality), will clearly shift towards higher values in the future.
However, isothermality (BIO3) will not change in the optimis-
tic scenario but will decrease in the pessimistic scenario.
Precipitation in the wettest quarter (winter) (BIO16) will de-
crease slightly in the future, whereas the monthly variation in

precipitation (precipitation seasonality, BIO15) will increase
notably by 2050. Changes in temperature ranges rather than
changes in precipitation will apparently have a greater impact
on the suitable habitat for the Atlantic populations of maritime
pine.

Distribution model projections for the two different emis-
sions scenarios reveal important shifts, with the suitable hab-
itat for maritime pine increasing over time horizon for the
most pessimistic emissions scenario. Major changes are al-
ready predicted by 2050 and imply an increase in the surface
of suitable habitat of between 0.85 and 1.1 million hectares,
representing a respective increase of between 45.86 and
60.75% over the current surface. In addition, projections for
2070 reveal a further increase in suitable habitat of between
4.01 and 5.38% over that predicted for 2050. Although a sub-
stantial global increase in suitable habitat is predicted, mainly
reached by filling gaps between the limits of the current area, a
loss of suitable habitat is predicted for north-west Asturias and
León for 2070 (Fig. 7). There is no clear displacement in
latitude or longitude, but there is an increase in the average
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elevation from 362.68 m to 486.21 m a.s.l. in the worst sce-
nario for 2070. Considering the area occupied and the degree
of fragmentation of suitable habitat for Atlantic populations of
maritime pine, the mean patch area will be 170–400% higher,
the large path area index will increase by 26–37% and aggre-
gation index will increase by 6–7% (Table 6).

3.3 Productivity model: current and future site
productivity

The feature selection process in the random forest method
retained only 7 of 50 of current environmental variables as
the optimal subset size for site index prediction. Only two
variables contributed 75.37% of the importance score to the
model, with lithostratigraphy being the most important (alone
contributing 51.24%) and the geochronology (information
about the era and period of the geological material) the second
most important (contributing 24.13%). Globally, geological
and soil-related variables represented 90.28% of the impor-
tance score, and climate-related variables represented the re-
maining 9.71% (Table 7). The marginal response plots of the
two most influential variables revealed different groups or
units where height growth rates of maritime pine are different.
The highest productivity levels are reached on acid plutonic
rocks (granites, graniodorites and quartzodiorites, code 2 in
Table S1), distributed over 38.73% of the study area, with a
mean site index of 15.68 m. The lithostratigraphic groups
ranked second are schists, graphitic schists, phyllites,
ampelites and lidites (code 16 in Table S1), distributed over
12.25% of the study area, with a mean site index of 14.50 m.
The group comprising alluvial deposits of gravel, sand and silt
(code 56 in Table S1), distributed over 4.6% of region, yielded
a mean site index of 13.81 m. Moderate productivity values
were achieved in three representative lithostratigraphic groups
formed by schist, mica schist, quarzitic schist, paragneiss,
orthogneiss, migmatites and gravel, sand and silt deposits (al-
luvial sites, valley bottoms and low river terraces) (codes 1, 18
and 17 in Table S1) distributed over 22.62% of the study area,
withmaritime pine stands reaching an average site index value
of 13.45 m. The lowest site index values were reached by the
lithostratigraphic group formed by slates, sandstones and
quartzites, with an average site index value of 11.37 (codes
22 and 23 in Table S1), distributed over 6.16% of the study
area.

Concerning geochronological information, stands with the
highest site index values (averaged value of 15.59 m) are
located on geological substrates from the Palaeozoic
(Devonian-Carboniferous-Permian) (code 15 in Table S2),
distributed over 40.58% of the study area. Another two repre-
sentative groups from the Palaeozoic, i.e. Cambrian-
Ordovician (code 12 in Table S2) and Silurian-Devonian
(code 22 in Table S2), yielded the next highest values of site
index (average values of 14.27 m) and are distributed overTa
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18.73% of the study area. The lowest site index values (aver-
age value of 11.98 m) correspond to sedimentary material
from the Cambrian and Ordovician periods (codes 11, 18
and 27 in Table S2) and distributed over the 12.03% of the
study area.

The third most important variable (6.31% of normalized
importance score) was the probability of occurrence of R ho-
rizon within 200 cm, which can be interpreted as a surrogate
for effective soil depth. As this probability increases, the site
index rapidly decreases (Fig. 5). The fourth most important
variable (6.17% of normalized importance score) was
isothermality. The expected site index values decrease as the
isothermality increases.

The predictive performance of the site index from current
environmental conditions was satisfactory (60.01% of the ex-
plained variability), with no tendency for underestimation or
overestimation (Fig. 6). Regarding the residual metrics, the
root mean square error was 1.54 m and the mean average error
1.24m, representing 12.04% and 9.66% of the observedmean
value, respectively.

Conversion of site index to maximum mean annual in-
crement in volume per hectare and its associated optimal

rotation age was accomplished by the following two linear
relationships:

MAImax ¼ 5:3243þ 1:094⋅SI þ 0:0058⋅SI2−2897:1760⋅ 1=Nð Þ
ð1Þ

Ra ¼ 110:5400−5:3243⋅MAImax þ 0:0931⋅MAI2max ð2Þ

whereMAImax is themaximummean annual increment in volume
(m3 ha−1 year−1), SI is the site index (m),N is density of plantation
(stems ha−1) and Ra (years), the optimal rotation age (age at
which the MAImax is reached). The coefficients of determination
for Eq. (1) and Eq. (2) were 0.9991 and 0.9953, respectively.

Figure 7 shows the raster map reflecting the spatial and
temporal suitable habitat and forest productivity under the two
different climate change scenarios. Figure 8 shows the projec-
tions of site index model under climate change scenarios, re-
vealing that mean site index will only increase very slightly
(between 0.45 and 0.51%) relative to the current predicted
mean value (14.5 m). Moreover, in all the climate change sce-
narios, the surface of stands with site index lower than 16mwill
increase substantially. Note that in order to determine the only

Table 4 Variables included in the
SDM including their type and
variable importance

Type Variable Normalized
importance

Relative
importance

Summarized values for suitable habitat

Mean Max. Min. SD

Climate BIO1 11.57 100.00 12.96 15.10 8.00 1.00

Climate BIO03 11.22 93.49 3.94 4.40 3.60 0.14

Climate BIO04 10.60 81.81 413.34 565.40 307.00 60.44

Climate BIO16 9.44 59.84 447.94 662.00 241.00 77.91

Climate BIO15 9.40 59.09 42.26 53.00 27.00 4.77

Soil BD 9.28 56.85 1274.66 1506.00 1042.00 59.12

Soil SILT 8.63 44.69 32.42 44.00 20.00 3.85

Soil R 8.14 35.36 16.02 43.00 1.00 5.48

Terrain TSI 7.96 31.95 0.00 0.32 − 0.26 0.03

Soil WRB-LEV1 7.51 23.52 – – – –

Soil DB200 6.26 0.00 199.82 200.00 161.00 1.37

To ensure values of variable importance were expressed on a comparable scale for each of the response variable,
the scores of all the predictors selected were normalized so that they added up to a unitary value (normalized
importance) or were expressed as relative values. Relative importance = (VIM−VIMmin)/(VIMmax−VIMmin)
1 Qualitative variable

Table 5 Model fit metrics for the species distribution model (SDM)

Model Data set AUC OA TSS Kappa Sensitivity Specificity PoPthreshold

SDM Test 0.81 0.73 0.46 0.46 0.76 0.69 0.40

Train 1.00 1.00 1.00 1.00 1.00 1.00 0.40

Model fit metrics include the area under the receiver operator curve (AUC), overall accuracy (OA), true skill statistic (TSS), Cohen’s kappa, sensitivity
and specificity. PoP is the probability of presence. Model fitting and model evaluation metrics were obtained from the training and test datasets,
respectively. All the values represent the mean 10-fold cross-validation
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Fig. 3 Marginal response curves for the most important six variables
included in the species distribution model for current environmental
conditions. The variables are ordered in relation to their contribution to the
model (importance score), annual mean temperature (BIO1, °C),

isothermality (BIO3, °C), temperature seasonality (BIO4, %), precipitation
of wettest quarter (BIO16, mm), precipitation seasonality (BIO15, %) and
bulk density of fine earth fraction (kg m−3). The mean level (black or grey
lines) and standard deviation (grey area) of the occurrence probability

Table 6 Changes in the distribution (mean elevation and latitude), area (total area) and fragmentation (mean patch area, largest patch index and
aggregation index) of the suitable habitat of the Atlantic populations of maritime pine for current and four future climate change scenarios

Climate scenario Elevation (m a.s.l.) Latitude (degree) Total area (km2) Largest patch
index (%)

Mean patch area
(ha)

Aggregation index (%)

Current 382.68 42.79 18,615.31 45.04 899.29 90.87

2050 RCP 4.5 440.82 42.81 27,152.94 71.10 2426.54 96.97

2050 RCP 8.5 471.18 42.82 29,924.31 79.28 3797.50 97.81

2070 RCP 4.5 449.74 42.81 27,899.19 73.21 2687.78 97.25

2070 RCP 8.5 486.21 42.82 30,926.19 82.52 4495.09 98.27
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effect on site index of climate change; this variable was
projected onto current suitable habitat, to prevent the additional
effect on site index of the increase in surface area.

4 Discussion

4.1 Species distribution model and effects of climate
change on suitable habitat

The distribution of the Atlantic populations of maritime pine
has been expanding for more than 300 years, mainly due to
human input. The question of the extent to which expansion
has been human-induced is important in developing distribu-
tion models for species. We assume that because of its high
economic value, the species will currently occupy adequate
habitat for growth. Therefore, starting from this premise, and
considering the large surface area occupied by the species in
north-western Spain, we consider there is enough information
to describe and model the suitable habitat.

Maritime pine is a thermophilic species that grows in areas
characterised by mean annual temperatures higher than 10 °C
and very variable annual rainfall (range 500 to 1300 mm) (Alía
et al. 2009). Our findings have shown that temperature-related
variables are the environmental characteristics that most strong-
ly affect the distribution of the Atlantic populations of maritime
pine in Spain. The probability of presence of the species is
greatest in areas where the mean annual temperature is highest
and the variability is lowest (BIO3 and BIO4 variables), in
accordance with the autoecological data published for the spe-
cies (Abad Viñas et al. 2016; Nicolás and Gandullo 1967;
Gandullo and Sánchez Palomares 1994).

The minor effect of the precipitation-related variables is
consistent with the fact that in north-western Spain annual
rainfall is between 1000 and 1300mm, which is clearly higher
than the minimum of around 400–500 mm required by the
species (Abad Viñas et al. 2016). The increase in the presence
of this species in areas with seasonal precipitation, which is
highest in winter, can be spatially translated into lower altitude
areas near the Galician coast. In Galicia, rainfall decreases
with distance from the sea, as a consequence of the general
atmospheric circulation pattern with fronts arriving from the
west (De Uña Álvarez 2001).

Regarding soil characteristics, soil bulk density values may
be related to chemical and physical soil properties. This phys-
ical soil variable is usually negatively and closely related to
organic carbon content or soil organic matter (e.g. Alexander
1989; Grigal and Vance 2000; Périé and Ouimet 2008; Sakin
2012) and strongly positively correlated with the sand content
(Chaudhari et al. 2013). Bulk density can therefore be viewed
as a surrogate for soil properties such as soil organic matter or
sand content, among others, suggesting that maritime pine
prefers soils with low organic matter content and of sandy

texture. The former statement is consistent with the influence
of the mean annual temperature on distribution of the Atlantic
populations of maritime pine, as higher rates of organic matter
mineralisation are expected in areas with higher temperatures
(Álvarez-Álvarez et al. 2011). Concerning the latter statement,
sandy textured soils have long been recognized as most ap-
propriate for the species (Nicolás and Gandullo 1967; Bará
and Toval 1983; Gandullo and Sánchez Palomares 1994;
Abad Viñas et al. 2016).

The spatial analysis predicted an increase in suitable habitat
surface by 2050 of between 46 and 61% of the current area.
These findings are consistent with those of broader scale anal-
yses. According to the Forest Focus European dataset, an im-
portant degree of expansion of the suitable habitat area for
north-western Spain is expected in the next few decades
(http://data.europa.eu/88u/dataset/74bb6627-4c19-4ac7-
ac59-73e302bfc117), whereas Bede-Fazekas and Levente
Horváth (2014) indicated a slight expansion. However, loss
of suitable habitat is predicted for areas near the coast in west-
ern Asturias and the north-west of León for 2070. This is a
consequence of current precipitation in the wettest quarter
(BIO16) in the area (close to 300 mm) and the expected shifts
in this variable towards lower values in the future (Fig. 4).

As Atlantic populations of maritime pine are almost all
managed, the predicted gains in suitable habitat should be
interpreted as areas where new plantations of this species
can be established. Nevertheless, colonization simulations in
Mediterranean populations have shown that maritime pine,
mainly dispersed by wind, has a notable colonization capacity
that allows extension of the distribution area and occupation
of the new available land (Juez et al. 2014). In addition, the
high level of standing variation and phenotypic plasticity of
the Atlantic populations of maritime pine should enhance its
capacity to adapt to the future climate (Serra-Varela et al.
2017).

The predicted high expansion of suitable habitat for
Atlantic maritime pine stands is reflected in the expected met-
rics of landscape fragmentation, with more continuous stands
of the species being possible in the future.

4.2 Productivity model and effects of climate change
on productivity

As the productivity model enables site index to be predicted as
a function of environmental variables (including several cli-
matic variables), the model is capable of predicting changes in
site index under non-constant climate. Lithological variables
(lithostratigraphy and the age of the geological formations)
were clearly the prominent features explaining the site index
variability in the Atlantic maritime pine stands. This is not
surprising as the geological formation has previously been
reported to be an important factor affecting the potential
growth of maritime pine (e.g. Bravo-Oviedo et al. 2011;
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Eimil-Fraga et al. 2014). According to these authors (op. cit.),
lithological variables are strongly related to soil depth, avail-
ability of some soil nutrients, elevation, slope and temperature
as result of its distribution and geomorphology over the re-
gion. The high site index of Atlantic maritime pine stands
established in soil over plutonic rocks (granites, granodiorites
and quartz diorites) may be due to the fact that these stands are
located at lower elevations and that the soil may be deep
owing to the higher degree of tectonization in areas with abun-
dant faults and fractures (Eimil-Fraga et al. 2014). By contrast,
the lowest site index reached on quartzites, slates and

sandstones between the Cambrian and Ordovician may be
related to the high resistance of these rocks to weathering,
which frequently results in shallow soils (Eimil-Fraga et al.
2014).

The next most important variable, the probability of occur-
rence of R horizon within 200 cm, can be viewed as a surro-
gate for exploitable soil volume or rootable depth. Other au-
thors have found that maritime pine site productivity is pri-
marily associated with soil depth (e.g. Bará and Toval 1983;
Oliveira et al. 2000; Álvarez-Álvarez et al. 2011; Eimil-Fraga
et al. 2014). The observation that the only variable directly

Fig. 4 Distribution of the climatic variables that contributed to the model
explaining the distribution under five scenarios: (1) the current reference
period; (2) 2050 under the RCP 4.5 emissions scenario; (3) 2050 under
the RCP 8.5 emissions scenario; (4) 2070 under the RCP 4.5 emissions

scenario; and (5) 2070 under the RCP 8.5 emissions scenario. The vari-
ables shown presented an accumulated normalized importance of up to
52.23%
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related to the nutrient soil content (cation-exchange capacity)
is of little importance in estimating site index indicates the

frugality of the species. Frugality is a characteristic of pioneer
species and usually is associated with the presence of fungi

Fig. 5 Marginal response curves for the four variables included in the
productivity model for current environmental conditions. Variables are
ordered by their contribution to the model (importance score). LIT_dlo,
lithostratigraphy; Geo_units, geology strata; R, probability occurrence of
R horizon within 0–200 cm (%), isothermality (BIO3, °C). The mean
(black line) and standard deviation (grey area) of the probability presence.

The prediction value of site index is shown as a function of each variable
while all other variables are held at their median values for locations
where Atlantic populations of maritime pine is present. Note: supplemen-
tary Tables S1 and S2 include the significance of the numerical codes
shown in the two first graphs

Table 7 Variables included in the
productivity model, including
their type and variable importance

Type Variable Normalized
importance

Relative importance Summarized values for suitable
habitat

Mean Max Min SD

Lithostratigraphy LIT_dlo1 51.24 100.00 – – – –

Geology Geo_es1 24.13 43.16 – – – –

Soil R 6.31 5.80 16.02 43.00 1.00 5.48

Climate BIO03 6.17 5.52 3.94 4.40 3.60 0.14

Soil CEC 4.71 2.45 25.04 66.00 15.00 2.82

Soil WRB-LEV11 3.89 0.72 – – – –

Climate BIO08 3.54 0.00 8.59 12.50 2.60 1.64

To ensure values of variable importance were expressed on a comparable scale for each of the response variable,
the scores of all the predictors selected were normalized so that they added up to a unitary value (normalized
importance) or were expressed as relative values. Relative importance = (VIM−VIMmin)/(VIMmax−VIMmin)
1 Qualitative variables
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that commonly form the mycorrhizae (Bará and Toval 1983;
Maugé 1987. The negligible influence of chemical soil vari-
ables on site index has long been observed (Bará and Toval
1983; Álvarez-Álvarez et al. 2011; Eimil-Fraga et al. 2014)
and explains the remarkable character of maritime pine as a
“site-demanding” rather than a “nutrient demanding” species.

The first climatic variable contributing to explaining site
index (isothermality, BIO3) may indicate that productivity is
more closely related to low variations in temperature than to
the mean annual temperature, although other authors have
found that the latter variable is also positively correlated with
site index in NW Spain (Eimil-Fraga et al. 2014). By contrast,
in maritime pine stands inMediterranean areas of Spain, mean
annual temperature is only positively correlated with site in-
dex in areas characterised by high precipitation (Bravo-
Oviedo et al. 2011). The high rainfall in NW Spain may

explain why precipitation variables do not significantly ex-
plain site index variation, unlike in the Mediterranean area.

The total variance explained by the fitted site index model
(60%) can be considered suitable within the framework of site
index estimation from environmental variables (Aertsen et al.
2010; Bontemps and Bouriaud 2014). A few studies have
reported better performance of site index models developed
for other species, mainly conifers: e.g. Fontes et al. (2003) for
Douglas fir, Sharma et al. (2012) for Norway spruce and Scots
pine, Brandl et al. (2014) for Norway spruce and Bjelanovic
et al. (2018) for trembling aspen, lodgepole pine and white
spruce. Many studies have reported similar or less accurate
results; e.g. Bergès et al. (2005) for Sessile oak, Albert and
Schmidt (2010) for beech and Norway spruce, Aertsen et al.
(2010) for Pinus brutia, Pinus nigra and Cedrus libani,
Sabatia and Burkhart (2014) for loblolly pine and Watt et al.
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Fig. 6 Field measures vs. predicted values of site index (SI) for training (left) and evaluation (right). Solid lines indicate the regression fits (n = 85, 10-
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(2015) for radiata pine. Concerning maritime pine, previous
studies have obtained less accurate results than in the present
study: Pacheco Marques (1991), Bravo-Oviedo et al. (2011)
Álvarez-Álvarez et al. (2011) and Eimil-Fraga et al. (2014). In
addition, these models include some soil chemical variables
that are expensive to obtain, thus restricting or decreasing the
practical application of the models. The model presented here
can be considered operational and inexpensive, as fieldwork is
not required for site index estimation.

Several statistical approaches, including multiple linear re-
gression and artificial neural networks (Aertsen et al. 2010),
have been used to develop models to predict site index from
environmental variables. Non-parametric techniques are con-
sidered very flexible and robust for this purpose, although they
have been less widely used than multiple linear regression
(Jiang et al. 2015). This can be partly explained by the fact that
the former techniques do not provide explicit equations that
facilitate application by forest managers who are not specifical-
ly trained in machine learning techniques. To date, few studies
have used random forest algorithms within the framework of
the present study (but see e.g. Weiskittel et al. 2011b; Sabatia
and Burkhart 2014; Jiang et al. 2015). Although the results
obtained by these authors (op. cit.) were promising, it has been
suggested that random forest algorithms could provide illogical
site index predictions under extrapolation (e.g. Aertsen et al.
2010; Sabatia and Burkhart 2014). Considering current climate
conditions, use of the widest possible range of observed data
would prevent extrapolation-related problems. However, pre-
diction of species distribution and productivity models for fu-
ture climatic conditions may not be as reliable (Sabatia and
Burkhart 2014).

The good performance of the linear model for the maxi-
mum mean annual volume increment as a function of site
index was expected a priori because there is usually a strong
relationship between maximum mean (annual or periodical)
increment in volume and site index (Waring et al. 2006). In
addition, the maximum mean annual volume increment data

was derived from simulations using dynamic growth models
for the species, i.e. the data was smoothed and much of the
variation removed (e.g. Hasenauer and Monserud 1997). The
model used to estimate the optimal rotation age also per-
formed very well and will serve practitioners as a support
for considering different harvesting age alternatives.

Finally, two explanations are suggested for the minor effect
of climate change in the expected productivity (increase <
than 1%) of the Atlantic populations of maritime pine: (i) only
two temperature variables, i.e. isothermality (BIO3) and mean
temperature of the wettest quarter (winter -BIO8), are related
to maritime pine productivity, and (ii) the joint contribution is
low, accounting for only 9.71% of the normalized importance.

5 Conclusions

Two raster-based models of 250 m resolution were developed
in order to predict the current and future suitable habitat and
productivity for Atlantic populations of maritime pine in
Spain under climate change scenarios. Both models were de-
veloped using the random forest machine learning technique
and currently available spatially continuous environmental
variables.

Climate variables drive the suitable habitat of the species,
whereas site index variability is mainly explained by litholog-
ical or physical soil variables. Climate change is expected to
lead to a large increase in the area of suitable habitat for
Atlantic populations of maritime pine by 2070. Predicted gain
in suitable habitat may lead to more favourable conditions for
the species, making it preferable to radiata pine (also widely
used in the region) for reforestation programmes. The pro-
posed models may be useful as decision-making tools for
forest managers and politicians planning sustainable use of
the forest resources under changing climate. Further research
aimed at obtaining a better understanding of the complex re-
lationships between environmental variables and species
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occurrence and productivity is advisable to enhance the
climate-sensitive predictive models.
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