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Abstract

- Key message An increase in the stiffness of lumber with a decrease in initial tree spacing was confirmed for Pinus patula
Schiede ex Schitdl. & Cham. The underlying properties of microfibril angle, wood density and knot frequency explained
71% of the variation in lumber stiffness. Tree spacing also influenced wood properties independent of radial growth rate.
+ Context Rapid growth rates and reduced harvesting ages of South African-grown pine plantations have caused a reduction in
the stiffness of structural lumber, which accounts for about 75% of all sawn wood. Microfibril angle and wood density are known
to influence wood stiffness, which may be manipulated by the growing space of trees.

« Aims The objective of this study was to evaluate the effect of slower growth rates, caused by narrow tree spacing, on the
suitability of Pinus patula Schiede ex Schltdl. & Cham. wood for structural lumber.

« Methods An 18- and a 19-year-old spacing experiment with four levels of initial tree spacing (1.83 m x 1.83 m, 2.35 m x 2.35
m, 3.02 m x 3.02 m and 4.98 m x 4.98 m) were sampled. Linear and non-linear mixed-effects models were developed to examine
the effect of tree spacing on the quality of wood and lumber as defined by the modulus of elasticity, modulus of rupture and knot
frequency of 208 boards and the ring-level microfibril angle and wood density of 86 radial strips.

* Results Wood and lumber quality improved with decreasing spacing, and only the narrowest spacing had lumber that
conformed to the requirements of the lowest South African structural grade. Microfibril angle, wood density and knot frequency
explained 71% of the variation of lumber stiffness. After accounting for ring width differences, there remained a significant effect
of initial spacing on the parameters of models predicting microfibril angle and wood density.

+ Conclusion Wide initial spacing is discouraged if higher strength grades are desired for Pinus patula lumber.

Keywords Wood quality, - Initial spacing, - Modulus of elasticity, - Microfibril angle, - Wood density

1 Introduction

The selection of appropriate spacing between trees is an im-
portant tactical decision made in support of forest
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management strategies. The resulting growing space available
is one of the major factors influencing full realization of the
genetic potential of trees, in terms of volume growth (Zobel
and Talbert 1984). The delayed onset of competition, caused
by sufficient growing space, positively influences tree growth
and vigour, which results in greater stem taper, lower living
crowns with larger branch sizes and a reduced risk of mortality
(Savill et al. 1997; Harrington et al. 2009; Gadow and Kotze
2014; Ashton and Kelty 2018). Tree spacing is also the most
powerful management tool available to influence the physical
properties of wood raw material and their within-tree variabil-
ity (Larson et al. 2001; Macdonald and Hubert 2002;
Schimleck et al. 2018). Control over tree spacing may be
exercised at stand establishment/regeneration (initial spacing)
or throughout the rotation at various developmental stages of
the stand through respacing (pre-commercial) or thinning
(Cameron 2002).
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Globally, the commercial management of softwood plan-
tations has generally moved towards regimes that secure larg-
er volume growth in the shortest possible time, typically
favouring wider tree spacing (Hein et al. 2007; Kotze and du
Toit 2012; West 2014). This strategic adaptation towards op-
timized stand volume productivity is guided by management
objectives, which classically aim to grow large trees at the
lowest cost possible while maximizing financial return. In
South Africa, constraints in the form of land availability, water
use legislation and conservation demands pose further chal-
lenges (Zwolinski and Bayley 2001; Louw 2006). These fac-
tors have made South African forestry highly productive
(ranked 19th in the world by industrial roundwood production
by 2012) despite a forest cover of only about 1.2 million ha
(Jiirgensen et al. 2014). Between the years 1960 and 2016,
plantation production increased by 38% while the afforested
area simultaneously increased by only 5% (Godsmark 2017).
Under such aggressive management, trees consequently grow
much faster, and merchantable volumes are realized sooner.

Considering the age dependency of mechanical properties,
the main consequence of increased productivity on wood
quality is largely considered to be an increase in juvenile wood
proportions at final harvest (Larson et al. 2001; Malan 2010).
This wood type is characterized by high microfibril angle
(MFA) and low wood density (WD) (Moore and Cown
2017), which negatively influences wood stiffness (Cave
and Walker 1994; Burdon et al. 2004; Xu and Walker 2004,
Vikram et al. 2011; Wessels et al. 2015a). Wood products
processed mostly from this type of raw material will likely
decrease the percentage of lumber graded to higher strength
classes, which are normally classified according to stiffness.
Several studies over the last few decades have confirmed the
negative effects of increased juvenile proportions on lumber
strength (modulus of rupture, MOR) and stiffness (modulus of
elasticity, MOE) and in some cases lumber distortion
(Kretschmann and Bendtsen 1992; Burdzik 2004; Biblis
2006; Dahlen et al. 2012; Dowse and Wessels 2013). The
MOE of some structural lumber produced in South Africa
has been reported at 25% less than the lowest structural grade
S5 (Dowse and Wessels 2013) which, in terms of MOE, is
comparable to the second lowest European strength class C16
(CEN 2016).

In response to wood quality concerns, initial research in
South Africa focussed on establishing the current resource
characteristics and variation of mechanical and physical prop-
erties of wood, as well as the non-destructive prediction there-
of (Wessels et al. 2011, 2014, 2015b, a; Dowse and Wessels
2013; Muller et al. 2017). Much like international research
(Moore and Cown 2017; Schimleck et al. 2018), these studies
clearly indicate that the nature of wood material from modern
plantations has changed and that certain forest management
interventions should be considered in order to improve wood
quality—particularly stiffness properties. The focus thus
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shifted towards understanding wood property variation in re-
sponse to silviculture (Malan 2012), particularly initial spac-
ing (Wessels and Froneman 2015; Erasmus et al. 2018;
Froneman and Wessels 2018), with increased emphasis on
an end product perspective. These studies provided some ev-
idence that lumber stiffness may indeed be increased through
closer tree spacing but that the mediatory mechanisms, such as
tree slenderness (Waghorn and Watt 2013), were not consis-
tent with reference species such as Pinus radiata D. Don. The
magnitude of positive spacing effects was also species specif-
ic. Additionally, Auty et al. (2017) illustrated that models,
even with ring width terms, may not be able to fully explain
the effects of tree spacing on radial wood property variation.
This is an important consideration which, to our knowledge,
has only been investigated at one site in the country (Erasmus
et al. 2018). More work is therefore required to elucidate and
generalize the influence of spacing and its casual factors on
wood properties.

An initial experiment evaluating the effect of initial spacing
on the MFA and WD of Pinus patula Schiede ex Schitdl. &
Cham. wood was completed, using increment cores from
standing trees (non-destructive) of a spacing trial, and was
reported by Erasmus et al. (2018). In the current study, an
additional spacing trial provided more increment cores but
was also destructively sampled and processed into sawn lum-
ber. Data from both spacing trials were utilized in the current
study where the objective was threefold: first, to investigate
the effect of initial spacing on the physical and mechanical
lumber properties of P. patula, particularly lumber MOE; sec-
ond, to assess the influence of MFA, WD and knot properties
on lumber MOE; third, to examine the effects of changes in
radial growth rate, as mediated through initial spacing, on the
within-tree variation of MFA and WD. The results of this
study would assist in formulating forest management regimes
that consider wood quality of P. patula in addition to growth
and yield, since this species is the dominant conifer in South
Africa and accounts for about half the softwood area in the
country (DAFF 2017).

2 Material and methods
2.1 Experimental site and design

This study was conducted in an 18- and a 19-year-old
P. patula spacing experiment, both located in the
Mpumalanga escarpment near the town of Barberton, South
Africa (25.7175° S, 30.9750° E and 25.7665° S, 31.2395° E,
respectively). The 18-year-old (Montrose Plantation) experi-
mental trial, reported in the previous study (Erasmus et al.
2018), is situated roughly 30 km from the 19-year-old
(Highlands Plantation) experimental trial. The former occu-
pied a site with a characteristic mean annual temperature of
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16.2 °C, a mean annual precipitation of 887.7 mm and clay
loam soil with average depths of 366 mm. The same values for
the latter were 16.5 °C, 905.8 mm and 628 mm, respectively.
The seed stock for both sites did not undergo any genetic
improvements with respect to wood properties.

All trees in this study were pruned at 5, 7 and 9 years after
planting to a height of 2, 3.5 and 5.5 m, respectively. Each
spacing experiment followed a randomized complete block

design consisting of four square initial spacing levels, each
replicated in two blocks (Table 1). For brevity, we hereafter
simply refer to each spacing level by the shortest distance be-
tween trees, i.e. 1.83 m, 2.35 m, 3.02 m and 4.98 m. Each
sampling plot had been planted with 49 seedlings in a 7 x 7
tree layout (variable area plots), but only the centre 25 trees
were considered in the study reported here as the outer trees
were considered buffer rows.

Table 1 Summary of measured and calculated variables across tree spacing at the tree, board and ring level for each plantation
Description Spacing (m) Limits/
required*
498 3.02 2.35 1.83
Tree level: Planting density (stems ha™) 403 1097 1808 2981
Montrose and Highlands Plantations Survival (%) 97 91 75 57
Basal area (m” ha™) 36.3 50.2 513 45.3
Relative stand density 6.2 10.0 10.9 10.6
Total stem volume (m® ha™) 349 463 471 409
Mean DBH (cm) 33.9 24.9 21.3 18.0
Mean height (m) 23.5 22.3 21.4 20.7
Mean slenderness 0.67 0.86 0.97 1.11
Top height (m) 24.6 23.8 24.0 22.8
Quadratic mean DBH (cm) 344 25.3 21.9 18.4
Tree level: Mean live crown height (m) 15.2 17.9 18.0 17.0
Highlands Plantation Mean live crown length ratio 0.37 0.26 0.21 0.27
Mean crown mass (kg) 399 102 115 38
Mean branch diameter (mm) 26.2 20.3 21.4 16.2
Mean branch count 278 176 112 156
Board level: Sample size (logs) 11 12 12 11
Highlands Plantation™* Sample size (boards) 74 56 39 39
Mean MOE (MPa) 6503 7613 7119 8537 7800
5th perc. MOE (MPa) 4087 4923 5129 5342 4630
5th perc. MOR (MPa) 13.04 15.7 16.6 222 11.5
Mean knot frequency 7.1 79 8.3 9.1
Mean max knot size (mm) 14.6 10.6 11.7 7.4
WD (kg m™) 445 464 447 467 360
Bow (mm m™) 1.88 1.75 1.95 1.36 10
Twist (°) 2.08 2.84 3.28 3.46 5
Spring (mm) 1.74 2.5 2.64 1.69 15
Mean RW 11.5 8.8 8.7 6.4
SilviScan (mm)
Mean MFA 21.9 16.2 16.9 14.1
SilviScan (°)
Mean WD 418 458 460 491
SilviScan (kg m?)
Ring level: Sample size (trees/radial strips) 20 22 22 20
Montrose and Highlands Plantations RW (mm) 94 6.8 6.0 55
MFA (°) 18.5 13.6 13.1 12.4
WD (kg m™) 443 491 502 507
LWP (%) 26.2 31.5 31.0 324

*Limits and required values according to SANS 1783-2 (2013) and SANS 10163-1 (2003), respectively

**The board-level values for the Highlands Plantation included board position 3
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2.2 Sampling and measurements

Relative stand density, a measure of site occupancy, was cal-
culated according to Curtis (1982), and the diameter at breast
height (DBH) and standing tree height were manually record-
ed for all trees (Erasmus et al. 2020). The top height was
calculated as the mean height of the 20% thickest trees per
spacing treatment (Sharma et al. 2002). The slenderness of a
tree was taken as the ratio of tree height (adjusted by — 1.3 m
in order to coincide with the breast height) to DBH.

Additional data of the Highlands Plantation was available,
measured or calculated. This included the measurements of
DBH and height for each year throughout the duration of the
experiment. A regression-supported sampling was also used to
estimate the total mass of the branches of three to four randomly
selected trees per spacing treatment. A minimum of 23
branches (one random branch per whorl), distributed over the
full length of the bole, were weighed on a green basis (branch
wood, bark and foliage combined). The basal diameter was
measured on all branches for these trees (2611 branches in
total). The logarithmic form of the power law model, with
branch basal diameter as the independent variable, was used
to estimate model coefficients and then predict branch mass
for all branches not weighed, according to the method described
by Seifert and Seifert (2014). Dead branches were measured
and estimated separately. Crown mass was calculated as the
total branch biomass (Table 1). The height of the live crown
base was measured, and the ratio of live crown length to the tree
height was calculated (four to fifteen trees per treatment). The
varying sample size here was due to undistinguishable live
crowns caused by fire damage to some branches.

2.3 Material preparation and testing

Radial strips were processed from samples removed at 1.3 m
above ground for randomly selected trees of both Plantations
for the measurements of MFA and WD using the CSIRO
SilviScan 3 apparatus (Evans 1999) in Melbourne, Australia,
at a radial resolution of 2 mm and 0.025 mm, respectively
(Table 1). Note that these WD values reported in this study
need to be multiplied by 0.8 to approximate basic density.
Where possible, compression wood was avoided when pro-
cessing strips. Latewood percentage (LWP) was calculated
using a threshold of 500 kg m™, adjusted according to darker
latewood bands of rings.

For the Highlands Plantation only, 11-12 trees per spacing
treatment were randomly selected and a 2.4-m saw log was
removed directly above a height of 1.3 m for each tree
(Table 1). The logs were processed using a cant sawing pattern,
yielding 208 boards. All boards had a cross-sectional thickness
of 38 mm (wet dimension, 40 mm) and a width of either
114 mm (wet dimension, 120 mm) or 152 mm (wet dimension,
160 mm) for logs with larger diameters (Fig. 1). Boards were
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Fig. 1 The sawing pattern used to process logs into boards of the given
wet dimensions. Board positions are indicated from 0 (pith board) to 2
(outer board). The dotted lines indicate where the cant boards were re-
sawn to a width of 120 mm (wet dimensions)

kiln-dried to a target moisture content of 12%. The boards with
a width of 152 mm were also re-sawn to a constant width of
114 mm for all boards in order to have consistent board sizes
and avoid a size effect (Fig. 1). Templates on the ends of logs
enabled the tracking of each board processed from a given log.
The range of rings present in a given board was counted by
reconstructing logs using the templates. Therefore, we could
assign a mean ring-level MFA and WD value to each board,
as well as the change in both MFA (AMFA) and WD (AWD)
from their minimum to maximum values according to the an-
nual rings of the corresponding radial strip. The position of the
boards was defined with respect to those with pith tissue which
were marked as “board 0”—also referred to as pith boards in
this study (Fig. 1). In a number of cases, the pith extended into
an additional board 0. Due to the small sample size, board 3,
sawn adjacent to board 2 in the largest trees, was excluded from
the statistical analysis that included board position as a fixed
effect. WD, moisture content and distortion (twist, bow and
spring) of each board were measured according to SANS
1783-1 (2018). According to the guidelines set out in SANS
6122 (2014), 4-point bending tests were performed using an
Instron tensile/bending apparatus. The MOE was calculated
between the loads 400 and 2200 N. The maximum knot area
(on the surface of the lumber) and the total number of knots
(knot frequency) in the maximum stressed area, i.e. centre third
of the span, were assessed for each board (Table 1).

2.4 Data analysis
The R system for statistical computing (R Core Team 2018)

was used for all data analysis. The hierarchical structure of the
data warranted the application of linear and non-linear mixed-
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effects models, which can handle an unbalanced design
(Lindstrom and Bates 1990; Pinheiro and Bates 2000).
Following the experimental design, a nested structure was
considered for all the random effects (~N(0, 6%)) of plot, tree
and board position, before model simplification. The specific
parameterization of models and all fixed and random effects
were evaluated and justified with chi-square-based likelihood
ratio tests and Akaike’s information criterion, AIC (Akaike
1974). Heteroscedasticity was modelled as a function of cam-
bial age, while serial correlation was modelled using a first-
order autoregressive correlation structure. More details on
these are given by Auty et al. (2013). Multiple comparisons
(Fischer’s LSD test) between factor-level means of lumber
and wood properties were made with a pairwise significance
threshold of o = 0.05. Fit indices (R*) were calculated on the
fixed part of models, as well as after the inclusion of each
random effect, according to the equations given by Parresol
(1999). Model performance was assessed with the mean ab-
solute error |E| and root mean square error (RMSE). Only full
annual rings were considered for data analysis.

The following model was used to analyse the variation of
lumber MOE, MOR and WD as caused by spacing treatment
and board position from the pith:

Yigp = p+7i+ri + (77) 3 + bij + €ijwa (1)

where Yj;; is the MOE, MOR and WD of an individual board;
1 is the grand mean of the response variable; 7; is the fixed
effect of the ith spacing treatment; 7 is the fixed effect of the
kth board position; (77);; is the spacing treatment and board
position interaction effect; b;; is the random effect at the tree
level; and €, is the within-group error. The influence of wood
properties on lumber MOE (Highlands only) was also evalu-
ated using the following model:

Vi = Bo + bi+ bij + BiM FAyj + B, WD
+ B3log(Kyjk) + ik (2)

where y; is the MOE of lumber; &y, 5, 5, and 35 are param-
eters to be estimated from the data; MFA;;, WD, and Ky are
the MFA, WD and knot frequency of each board; b, is the
random effect of the ith tree; and b;; is the random effect of the
Jjth board position within the ith tree. Sensitivity analysis was
done on the fixed part of the model to determine the relative
“influence” of each variable on MOE (Pannell 1997). In Eq. (2),
each variable was changed, one at a time, from the observed 5th
to the 95th percentile while holding the remaining variables
constant at their observed means. Thus the absolute change in
the dependent variable, |Ay;|, was calculated and then recorded
as a percentage of the sum of all |Ay;;| to determine the sensi-
tivity of MOE to the particular variable in question.

Various exponential and logistic model parameterizations
were screened to determine the most appropriate model for

simulating the pith-to-bark behaviour of ring-level MFA and

WD. The modified three-parameter logistic model, Eq. (3), pre-

sented by Jordan et al. (2005), proved to be the best fit for MFA:
Qo

1 + exp(—a; CAy)

Yij = + o +ay;+ € (3)

Qo
1+ exp((—ou + asRW;;) CAy)

Yij = +aytayte; (4)
where y;;, CA;; and ¢;; are the MFA, cambial age (ring number
from pith) and the residual error of the jth annual ring in the ith
tree respectively; (ag/2 + a»), a and «, correspond to the
initial MFA (y-intercept), the rate parameter and the lower
asymptote, respectively, which could all vary with initial spac-
ing, plantation and the interaction between them; and a, ; is the
random effect of parameter o, for the ith tree. Since changes
in wood properties due to silvicultural events are typically
accompanied with responses in the radial growth of trees,
we additionally wanted to see if there remained an effect of
spacing on model parameters, over and above CA; and ring
width (RW;). The «; parameter was therefore changed to a
linear function of RW;; (Eq. (4)). As demonstrated by Auty
et al. (2013), radial MFA profiles were then simulated (Eq.
(4)) by using mean ring width values per annual ring and
spacing, which were predicted by Eq. (3) with RW;; as the
dependent variable (parameters not shown).

Alternative parameterizations of the same models proved
to be the best fit in modelling WD:

o oo +ag,
1 + eXp(*OqCAij)

g + Ozg,RWij + ap,;
Ay exp(—a; CAy)

+ o+ g (6)

where y;;is the WD of the jth annual ring in the 7th tree; o is the
maximum (asymptotic) WD value; v is the rate parameter; and
(/2 + av) is the initial WD value. Equation (5) allows the oy
parameter to vary randomly instead, while Eq. (6) adjusts the
same parameter for RWj;. This had the effect of adjusting the
asymptotic mature wood values and increasing the effect of
RW;; with CA;;. Once again, the fixed parameters could vary
with plantation, spacing and their interaction. Slenderness was
also added to the models, in place of RW, for both MFA and
WD models (Highlands Plantation only), but RW proved to
contribute more to the explanation of wood property variation.

3 Results
3.1 Stand characteristics

Tree survival rates and site occupancy are indicated in
Table 1. DBH increased with spacing for all ages.
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Fig. 2 The variation of (a) DBH, (b) height and (c) slenderness after reaching 1.3 m, for the Highlands Plantation only, fitted with a locally weighted

smoothing function to all observations (grey lines) for each spacing

Differences also increased with age, especially between
the two widest spacing treatments (Fig. 2a). Tree height
remained relatively similar for all ages up until ages of
about 10 after which the change in height decreased for
1.83 m (Fig. 2b). After an initial decrease, slenderness
gradually increased and was consistently greater with
decreasing spacing (Fig. 2¢). The rate of change in slen-
derness was slightly sharper with closer spacing. Crown
development in terms of mass was far greater in the
wider spacing (Table 1) due to both larger tree diame-
ters and greater number of branches. Crown size gener-
ally reduced with closer spacing (Table 1).

3.2 Board-level MOE and MOR

Individual board MOE, which included the extra board
position 3, varied from 3766 to 13,601 MPa, and the
mean MOE increased with closer spacing with the ex-
ception of a relatively small decrease from 3.02 to 2.35
m (Table 1). There were 13 pieces of lumber within
board position 3, of which 11 came from the widest
spacing. There was a significant linear relationship be-
tween MOE and mean CA (R® = 0.46; p < 0.001).
Differences in MOE between board 1 and 2 increased
with decreasing spacing (except from 3.02 to 2.35 m,
Fig. 3a). MOE for board 2 of the narrowest spacing was
significantly greater than that of the 2.35 m and 3.02 m
spacing, which in turn were significantly greater than
that of the widest spacing. The mean MOE for board
position 3 in the widest spacing was 7806 MPa, which
was not considerably higher than that of board position
2 of the same spacing—7619 MPa. MOE for board 2 of
the widest spacing displayed no significant difference to
that of board 1 of 2.35 m spacing, and even with board
0 for the closest spacing. Only board 2 for a spacing of
3.02 m and closer had mean values greater than 7800
MPa, and consequently, only the 1.83 m spacing
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conformed to the S5 mean MOE standard (Table 1).
The widest spacing was the only treatment that failed
to fulfil the required fifth percentile MOE (Table 1).
MOE variation could be moderately explained by both
the mean MFA (R? = 0.58; p < 0.001) and WD of
lumber (R® = 0.53; p < 0.001) individually. However,
WD had the greatest effect on MOE in the model given
by Eq. (2), followed by knot frequency and lastly mean
MFA (Table 2). The model was able to explain 71% of
the variation in MOE (92% with random effects)
(Table 3).

MOR varied from 9 to 86.3 MPa and was best ex-
plained by MOE (R* = 0.73). Therefore, the variation of
MOR across spacing and board position generally
followed the same patterns as MOE. MOR for the out-
ermost boards of the closest spacing was significantly
greater than the rest (Fig. 3b). Board 2 for the widest
spacing displayed no significant difference to board 1
for the second widest spacing and even board 0 of the
two narrowest spacings. Overall, the fifth percentile
MOR was sufficient to comply with the characteristic
bending strength of grade S5 lumber, and the 2.35 and
1.83 m spacing treatments even complied with grade S7
requirements (15.8 MPa).

3.3 Board-level WD and distortion

The WD of boards varied from 356 to 638 kg m™ and had a
moderate relationship with mean CA (R* = 0.53) and MOE
(R*=0.51) but displayed a weaker relationship with MOR (R*
= 0.35). Compared with MOE and MOR, a similar pattern of
variation of WD is observed (Fig. 3c). Board 2 for the three
closest spacing treatments was significantly greater than that
of the widest spacing, which was not significantly different to
board 1 for the other spacing treatments. All spacing treat-
ments conformed to the S5 standard for WD at the board level
(Table 1).
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Table 2 Sensitivity analysis of the fixed effects of Eq. (2)

Parameter Coefficient ~ Sensitivity analysis

Intercept 3948 Mean  Sth 95th  Change %
WD 154 453.8 3933 5450 23314 0.38
MFA —84.1 194 85 30.0 —1805.0 0.30
Log (knots) —994.8 2.0 1.1 3.0 —1935.8 032

Spacing had no clear effect on values of bow and spring but
twist decreased notably with spacing (Table 1). Twist also
consistently decreased from 4.4 to 1.6° from board 0 to 2.
The relationships between lumber distortion and the mean
MFA, AMFA and AWD respectively, were all very weak
and below R*> = 0.03. Overall, the mean lumber distortion
values in this study were lower than the limits for structural
use (Table 1).

3.4 Ring-level MFA and WD

The mean MFA per treatment varied between approxi-
mately 8 and 32°, displaying a decreasing non-linear
trend with CA (Fig. 4a). MFA for the Montrose
Plantation decreased more rapidly compared with
Highlands (Fig. 4a). Values for the 4.98-m spacing was,
on average, 4.9° greater than for 3.02 m. Compared with
the rest, the 4.98-m spacing clearly exhibited a lower
radial MFA gradient which began to stabilize after age
10, which was roughly three rings more than for any
other spacing (Fig. 4b). MFA for the three other spacing
treatments were relatively similar at equivalent rings.
Results from Eq. (3) confirmed these observations. Both
the ao and «, parameters were not significantly influ-
enced by either plantation or spacing, but the a; param-
eter was significantly lower for the Montrose Plantation.
The «a; parameter was also significantly greater for the
widest spacing (Fig. 5a).

Equation (4) proved to be the best fitting model,
explaining 81% (88% with random effects) of MFA
radial variation (Table 3). MFA was strongly associated
with RW (R? = 0.74). After accounting for differences
in RW, there was a significant influence of the interac-
tion between spacing and plantation on the ag, «; and
a3 parameters (Fig. 5b, ¢, d), which was small in the
case of «ag. The «; parameter was still significantly
greater for the widest spacing (i.e. a slower radial rate
of change), while the coefficient of RW («3) was also
significantly influenced by spacing, although only for
the Montrose Plantation (Fig. 5c, d). The «, parameter
was not significantly influenced by any factor. Overall,
modelled MFA for the 4.98-m spacing treatment clearly
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Table 3 Summary of all model

statistics given by Egs. (1-6) Level Model Property AIC Log- R? Model errors
likelihood
Fixed Tree Board position |E]| RMSE
Board Eq. 1 MOE 3101 — 1537 0.71 086 - 895 1142
Eq.2 MOE 3310 — 1648 0.71 0.83 092 867 1133
Eq. 1 MOR 1422 —697 057 069 - 8 10
Eq. 1 WD 1777 —873 047 082 - 27 35
Ring Eq.3  MFA 5251 —2532 078 085 - 30 40
Eq.4  MFA 5067  —2421 0.81 088 - 2.8 3.7
Eq.5 WD 12802 —6374 050 075 - 527 693
Eq.6 WD 12737 —6330 054 076 - 503 670

displayed the slowest radial rate of decline (Fig. 4c). Up
to about CA 10, the second widest spacing was also
generally greater than the two closest spacing treat-
ments. When plotting the modelled MFA against tree
radius, differences between the widest spacing and the
rest increased more markedly due to the combined

effects of RW and annual MFA increases with increased
spacing (Fig. 4d).

The mean WD per treatment increased steadily from
pith to bark, varying roughly between 340 and 580 kg
m?> (Fig. 6a), and was closely associated with LWP (R?
= 0.77). The Highlands Plantation had a slightly steeper

(@)
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initial incline in WD compared with Montrose (Fig. 6a).
WD in the 4.98-m spacing also displayed no clear indi-
cation of reaching a stable value towards the bark com-
pared with the other treatments, which began to stabilize
at around the 10th annual ring (Fig. 6b). Accordingly,
Eq. (5) showed that the Montrose Plantation had both a
significantly greater «, parameter, related to the initial
value, and a slower radial incline rate for WD («;). The
widest spacing also had the lowest «, parameter (Fig.
7a). A better depiction of the overall effect of spacing
can be seen in Fig. 6¢c, given by Eq. (6) (explaining
54% of the variation, Table 3), which confirms the main
difference being the lower WD gradient for the widest
spacing. WD was moderately associated with RW (R* =
0.43). Equation (6) showed that spacing also had a sig-
nificant effect on model parameters over and above RW
(Fig. 7b, c), although the «; parameter was not signif-
icantly influenced by any factor. The effect of RW on
WD was also significantly influenced by the interaction
of spacing and plantation (Fig. 7d). Predicted WD,
based on distance from pith, is indicated in Fig. 6d
where differences between spacing increased.

4 Discussion
4.1 Influence of initial spacing on grade recovery

Results of this study contribute clear findings to the body of
literature dealing with the generally positive effects of closer
spacing on the mechanical properties of lumber processed
from several species (Johansson 1992; Brazier and Mobbs
1993; Clark et al. 1994; Moore et al. 2009; Amateis et al.
2013; Rais et al. 2014; Froneman and Wessels 2018;
Erasmus and Wessels 2020). For P. patula, it is evident that
as initial spacing increases, conformance to minimum struc-
tural requirements is limited by lumber MOE. This has also
been proven true for South African-grown Pinus radiata
(Wessels and Froneman 2015) and Pinus elliottii (Froneman
and Wessels 2018). The opposite has been shown for conifers
on much longer rotations where the MOR limits the strength
class to which lumber may be graded before the MOE does,
when increasing tree spacing (Moore et al. 2009). However,
results are dependent on stand conditions and are best appli-
cable to corresponding site- and species-specific management
regimes.
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Fig. 6 Observed radial profiles of (&)
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In addition to strength and stiffness, acceptably low levels of
lumber distortion are also required by end users which, in the
case of twist, has been reported as problematic for P. patula
resources (Dowse and Wessels 2013; Wessels et al. 2014). The
variation of twist in this study was consistent with previous
research that reported a reduction in distortion from the juvenile
core to the outer mature wood (Brazier and Mobbs 1993;
Moore et al. 2009). Although twist increased notably with spac-
ing, its variation was less compared with the aforementioned
studies on P. patula, which used different spacing ranges.

4.2 Mechanisms through which initial spacing
influences lumber properties

In this study, we showed that MFA correlated well with MOE
and was the best individual predictor thereof, which supports
previous studies (Cave and Walker 1994; Walker and
Butterfield 1996). This was despite the complexity in deter-
mining exactly which rings were present in boards, given that
only a single radial strip was used to relate ring-level proper-
ties to boards and ignoring circumferential and longitudinal
variation. Collectively, however, MOE was slightly more
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sensitive to knot frequency and especially WD. This result
differs somewhat from a previous study on P. patula
(Wessels et al. 2015a), perhaps due to the lower spacing range,
but consistent with other studies using different resources
(Downes et al. 2002; Vikram et al. 2011).

Ring-level MFA and WD both displayed a relatively rapid
initial gradient, improving favourably from the pith with gra-
dients tending to react more sharply with reduced spacing.
This feature has been recognized in previous studies on
P. patula (Malan et al. 1997) and other species (Fujimoto
and Koga 2010; Watt et al. 2011; Moore et al. 2015). As a
result, ring-level properties reach more uniform values at ear-
lier CA. Considering that wood developed prior to this point
fulfils the definition of juvenile wood according to Zobel and
Sprague (1998), it then follows that the juvenile core is re-
stricted in age with closer spacing. Note that the added effect
of plantation on the radial gradient of wood properties implies
that a sharp initial decline in MFA in narrow spacing could be
similar to that of wider spacing on a different site, i.e. they
have the same age of transition from juvenile to mature wood.
For a given site, closer spacing also had the effect of improv-
ing the average MFA, WD and LWP (Table 1). Furthermore,
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the growth rate is markedly slower closer to the pith for closer
spacing (Erasmus et al. 2018) therefore, increasing differences
in wood properties between spacing at equivalent radii (Fig. 4
and 6). This observation was also reflected at the board level
where the MOE was generally higher at the same board posi-
tion. The same pattern was observed for MOR, which was
unsurprising considering that the two are typically highly cor-
related (Johansson 2003). Note that the smaller difference
between board 0 and 1, compared with the rest, contributes
to the explanation of the comparable lumber properties be-
tween these board positions (Figs. 4d and 6d). Although the
widest spacing produced additional boards (board position 3),
the overall MOE was still inferior to that of the closer spacing.
This can also be seen in the predicted MFA and WD of boards
(Figs. 4d and 6d). The influence of sawing pattern on the
average properties of lumber will ultimately depend on the
allocation of rings to a given board position. Nevertheless, if
the underlying wood property gradients of wider tree spacing
is consistently unfavourable at a given CA, as was the case in
our study (Fig. 4c and 6¢), then the average mechanical prop-
erties of lumber will likely be inferior compared with closer
spacing, regardless of sawing pattern.

The increase in differences of wood properties at great-
er distances from the pith elucidates the significant inter-
action between spacing and board position on mechanical
and physical lumber properties. The practical implications
are that the difference in mechanical properties between
inner and outer boards are greater for closer spacing
which is considered undesirable in terms of processing
efficiency (Malan 2010). The uniformity of annual rings
within a single piece of lumber is also a priority trait to
many sawmills (Hassegawa et al. 2020). Our study
showed that individual boards themselves will have sharp-
er MFA and WD gradients in closer spacing, which could
lead to uneven shrinkage or distortion (Walker and
Nakada 1999; Huang et al. 2003). This occurrence was
not evident in the results reported here. However, the fact
that the mean twist of boards increased with closer spac-
ing lends some support to this view. Sawing patterns that
increase the ring count of wood with sharp MFA gradients
may be influential in this regard (Tsoumis 2009). Overall,
the magnitude of the increase of twist with spacing in this
study is however of little practical importance as it was
well within the limits for structural lumber.
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4.3 Tree developmental effects on wood quality

With reference to the work reviewed by Zobel and Van
Buijtenen (1894), Malan et al. (1997) concluded that the rela-
tionship between growth rate and WD is extremely complex
given the varying interaction with environment and genetic
material. For a given quantity of photosynthetic substances
produced by the crown, a fast-growing tree will not always
prioritize cell production over cell material (Malan et al.
1997). Furthermore, Larson et al. (2001) argues that the effect
of RW on WD is an artefact of the inherent age dependency of
WD and that the effect of juvenile growth rate, for a given CA,
may be negligible. There was some evidence in this study to
partially support this view as ring width differed markedly
with spacing while WD remained relatively similar near the
pith. However, after accounting for CA, there was an effect of
RW, which increased at higher CA. It was also interesting to
note that the inclusion of a RW term in Eq. (6) accounted for
the differences in the radial rate of change in WD between
spacing treatments. However, there was still a significant ef-
fect of spacing on the remaining parameters. The residual
effect of initial spacing on wood properties in this study also
suggests that there are additional causal factors that control
differences in wood properties across spacing treatments,
which require further investigation. An explanation argued
by Auty et al. (2017), with respect to wood density, is that
widely spaced trees may tend toward a minimum value re-
gardless of radial growth. From a wood property modelling
perspective, it is important to consider the limitations associ-
ated with the use of growth rate as a proxy for spacing given
that the effects of spacing beyond growth rate are typically
considered negligible.

There is consensus between many authors that the rapid
initial decline in MFA is associated with mechanical constraints
related to tree slenderness (Spatz and Bruechert 2000; Watt
et al. 2006; Lachenbruch et al. 2011; Waghorn and Watt
2013; Wessels et al. 2015b). Saplings with small diameters
produce higher MFA, which endows trees with considerable
flexibility of the stem, acting as a safeguard against external
forces. As the tree grows, a decrease in flexibility is beneficial
to support its increasing weight. Slenderness in this study did
not however contribute more than RW to the explanation of
MFA or WD which perhaps, in this case, resulted more from
intrinsic gene expression manipulated by other spacing factors
rather than extrinsic controls related solely to slenderness
(Lachenbruch et al. 2011). Within the first four rings at breast
height, both slenderness and MFA decreased; thereafter,
slenderness increases. This may represent a possible
adaptation to a different developmental stage. Watt and
Kirschbaum (2011) argue that part of the reason for slender
stems in denser stands are that trees are guarded against exces-
sive sway by neighbouring trees (Milne 1991), reducing the
effect of wind in the canopy (Green et al. 1995). Canopy
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closure also begins earlier for closer spacing (Kotze and du
Toit 2012). This allows a tree to secure greater height at a given
diameter. Alternative models explaining the decreased MFA
and increased stiffness are cell hydraulic aspects and crown
development (Domec and Gartner 2002; Kuprevicius et al.
2013; Krajnc et al. 2019). In addition, although the closely
spaced trees were much more slender, they had considerably
less crown mass to support (Table 1). According to Larson et al.
(2001), the sharper radial decline in wood properties with closer
spacing is due to a restriction on crown development rather than
a direct effect of spacing (see Table 1). On the basis of this
view, it is then logical to hypothesize that the differences in
the radial property gradients between the plantations reported
here are likely due to different site conditions mediated through
the developing foliar organs. There may be opposing factors
however, since the Montrose Plantation had the steepest MFA
gradients, while the Highlands Planation had the steepest WD
gradients.

4.4 Commercial implementation of closer spacing

From a wood quality perspective, this study in conjunction
with many previous investigations seems to encourage man-
agement regimes that promote higher stand densities than are
currently used commercially. However, there has been limited
response from South African and other Southern Hemisphere
forest owners to such findings. This could be because forestry
planners rarely incorporate the financial effect of better-
quality lumber in their planning scenarios and that very little
work has been performed to quantify the economic benefits of
such management scenarios for the full lumber value chain.
Note that not only did the mechanical properties improve in
this study, but the volume per hectare also improved up to a
spacing of 3.52 m due to higher site occupancy earlier in the
rotation (Savill et al. 1997). This is despite the extra lumber
recovered (Figs. 4c and 6¢) for the widest spacing. The eco-
nomic value of forest stands is thus not due solely to volume
gains (Moore et al. 2018). Lumber graded to higher strength
classes may therefore be possible without compromising on
financial returns and may even improve it. It is recognized
however that there will be several offsetting factors, i.e. higher
establishment costs, lower sawmill volume recovery per log,
harvesting costs of smaller diameter trees and transportation
costs. Since there are less trees per hectare in wider spacing, it
is likely that the number of boards with higher MOE will
reduce not only in proportion but also in real numbers, reduc-
ing the sawmill’s throughput of high stiffness products.
Ultimately, a response from forest management will likely
be initiated if a comprehensive economic evaluation of the
value chain (including wood quality effects) can show similar
or better returns than current management regimes. Initial
work in South Africa shows promise in that regard (Charlton
et al. 2020). Currently, many growers of saw logs are only
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charged per volume (Rais et al. 2014), but there is evidence
that some sawmills are willing to pay a premium on raw ma-
terial with improved wood properties (Hassegawa et al. 2020).
Alternatively, it could be that a desire to incorporate lumber in
demanding applications, with regard to structural perfor-
mance, will eventually drive engineers to insist on an increase
in mechanical properties (Moore 2012). Further pressure from
local mills is also likely as the price of graded lumber reaches
import parity (Crickmay and Associates 2013).

5 Conclusion

The advantages of closer spacing can be summarized as fol-
lows: first, at equivalent CA, mean WD and MFA are im-
proved. Second, suppressed radial growth ensures that more
mature rings are prevalent closer to the pith, further improving
wood properties at similar distances from the pith. Third, lum-
ber in the closer spacing will have better mean MFA and WD
values. These advantages result in mechanical board proper-
ties improving with closer spacing. Moreover, the steep wood
property gradients did not result in significantly increased
lumber distortion.

Overall, it appears that if higher strength grades are desired
then wide initial spacing is discouraged—at least within the
context of short rotation systems. The underlying properties
that control wood stiffness during juvenile growth may be
improved with closer initial spacing before possible later thin-
ning to reduce mortality and stimulate volume growth.
Subsequent studies on P. patula should include further inves-
tigation into the mechanisms controlling MFA and WD.
Future work is required on further understanding the develop-
ment of annual wood properties, particularly WD and MFA,
as well how they are affected by thinning. Economic evalua-
tion of management regimes with closer spacing (over the full
sawn value chain) including the positive effect of better lum-
ber grades should be performed to better understand the po-
tential of commercial implementation of such regimes.
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