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Abstract
& Key message We compared (lognormal) universal kriging with the area-based approach for estimation of forest inven-
tory variables using LiDAR data as auxiliary information and showed that universal kriging could be an accurate
alternative when there is spatial autocorrelation.
& Context Forest inventories supported by geospatial technologies are essential to achieve a spatially informed assessment of
forest structure. LiDAR technology supplies comprehensive and spatially explicit data enabling the estimation of wide-scale
forest variables.
& Aims To compare the area-based approach with universal kriging for estimation of the stem density, basal area, and quadratic
mean diameter using LiDAR data as auxiliary information.
&Methods We used data from 202 inventory plots, distributed in four Forest Management Units with differences in structure and
management, and a 6-points/m2 resolution LiDAR dataset from a Pinus sylvestris L. forest in Spain to test the accuracy of the
(lognormal) universal kriging and the area-based approaches.
& Results In those Forest Management Units where the analyzed variables showed spatial autocorrelation, kriging showed better
results than the area-based approach in terms of RMSE and Pearson coefficient between observed and estimated values, although
lognormal universal kriging provided slightly biased estimations (up to 2%).
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& Conclusion Universal kriging is an accurate method for estimation of forest inventory variables with LiDAR data as auxiliary
information for those variable exhibiting spatial autocorrelation.

Keywords Forest inventory . ABA . Universal kriging . LiDAR . Two-stage sampling

1 Introduction

Forest monitoring is essential to designmanagement strategies
and conservation policies (Scott and Gove 2002; Köhl et al.
2006). Forest inventories are the main sources of information
to assess forest structure and for monitoring forest dynamics.
Geographic information systems (GIS) and remote sensing
technologies enable forest resources to be mapped through
wall-to-wall estimation of variables from plot measurements
and have transformed how forest inventory data are employed
(Tomppo et al. 2008).

Light Detection and Ranging (LiDAR) provides accurate
terrain elevation models and comprehensive and spatially ex-
plicit information of vegetation height (Lindberg et al. 2012),
enabling the estimation of forest attributes over large areas
(Ayrey and Hayes 2018). LiDAR has become an essential tool
for forest managers (White et al. 2013), over recent decades,
with LiDAR-derived metrics supported by field inventory da-
ta proving to be a useful approach for the evaluation of forest
structure (Blomdahl et al. 2019), estimation of fire-related
variables (Hall et al. 2005; Marino et al. 2018), biomass as-
sessment (Hall et al. 2005), and measurement of individual
tree attributes or species characterization (Lin and Hyyppä
2016; Harikumar et al. 2017). LiDAR height metrics are high-
ly correlated with growing stock variables, such as basal area
(BA), volume, and aboveground biomass in forests with rela-
tively simple structure (Lefsky et al. 1999; Means et al. 2000).
But relationships between height and BA and biomass are not
so straightforward for complex forest structures (Palace et al.
2015).

Statistical inference is required to evaluate the field mea-
surements over large areas, usually incorporating LiDAR in-
formation through regression models (White et al. 2013). The
area-based approach (ABA) (Næsset 2002) for the prediction
of forest variables is a successful technique for the integration
of LiDAR and field inventory data in forest inventories (White
et al. 2013). Under ABA, linear models can be built and ap-
plied to obtain estimates of forest attributes over an entire
study area using wall-to-wall LiDAR metrics as auxiliary var-
iables. Other modeling approaches have been applied with
ABA, such as the k-nearest neighbor method (Tomppo and
Halme 2004) or the linear mixed-effects models (Mauro et al.
2017). The ABA has been widely applied for estimating forest
stand attributes at fine scale (Means et al. 2000; Magnussen
et al. 2012) or for generalized prediction models from forest
inventory data (Næsset 2004; Bouvier et al. 2015).

Spatial autocorrelation is a common characteristic of many
forest inventory variables linked to site and climate factors as
well as ecological processes driving the stand development
(Legendre 1993). In this sense, kriging exploits the spatial auto-
correlation of forest inventory variables to increase the accuracy
of estimations (Montes et al. 2005). When there is an underlying
variable distribution explained by auxiliary variables, universal
kriging (UK) incorporates auxiliary information as a mean func-
tion (Montes and Ledo 2010), and the residuals between the
observed values and the mean function exhibit spatial autocorre-
lation. Nowadays, many forest inventories combine information
from two phases: information from remotely sensed data, such as
satellite images, aerial photogrammetry, or LiDAR, is collected
in the first phase, whereas the second phase comprises terrestrial
plots (Mandallaz and RongHua 1999). Universal kriging
employing variables derived from aerial photogrammetry as aux-
iliary information has proved to be effective in reducing estima-
tion error in forest inventories (Mandallaz 2000). However,
kriging estimator optimality is based on normality assumptions
(Matheron 1971) that the target variables in a forest inventory
often do not meet. Even though logarithmic transformations are
often required for these variables, the difficulties involved in
back-transforming lognormal kriging interpolations (Dowd
1982) have prevented the use of lognormal kriging in operational
forest inventories. However, robust lognormal kriging estimators
as proposed by Cressie (2006) or Nussbaum et al. (2014) have
demonstrated their viability for interpolation of soil variables.

Our aim in this work is to evaluate and compare the per-
formance of two techniques for estimation of stem density per
ha (N), basal area (BA), and quadratic mean diameter (QMD)
in dense stands of pines: (i) ABA, where field-based response
variables are linked to LiDAR metrics through linear models
and (ii) the UK approach for interpolation of field-based var-
iables with LiDARmetrics as auxiliary variables.We also aim
to assess the effect of spatial autocorrelation on the UK esti-
mation error and to provide scientific rationale for the choice
of ABA or UK in LiDAR-supported forest inventories.

2 Materials and methods

2.1 Study area

The study took place in Valsaín pinewood, a 7622-ha Pinus
sylvestris L. forest located in Sierra de Guadarrama, Spain
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(Fig. 1) at an altitude between 1200 and 2130 m. Valsaín
yields good-quality timber and plays an important role as a
carbon sink and in the protection of a high-mountain area
(Donés and Garrido 2001; Moreno-Fernández et al. 2015).

The study area has an average N of 604 stems/ha with a
minimum of 75 stems/ha and a maximum of 2147 stems/ha.
The average BA is 42 m2/ha with a minimum of 14 m2/ha and
amaximum of 91m2/ha. QMD shows an average of 33 cm/ha,
a minimum of 14 cm/ha, and a maximum of 63 cm/ha. As
described in the forest management plan, the area is divided
into three Forest Management Units (FMUs). The group
shelterwood system is implemented during a 40-year regener-
ation period in those forest compartments that have reached
the rotation age (120 years), while in the other compartments,
a moderate thinning regime is applied. Regeneration areas and
polewoods predominate in FMU 1, whereas dense mature
stands and polewoods predominate in FMUs 2 and 3, respec-
tively. We considered a fourth FMU comprising the pine
stands located at altitude > 1800 m since they show specific
high-mountain stand structure and are managed for protection.
The distribution and characteristics of each FMU are shown in
Fig. 1 and Table 1.

2.2 Data

2.2.1 Field inventory

Two hundred two plots of 13-m radius were positioned using
a Leica SR530GPS receiver with sub-metric accuracy.Within
the plots, the diameter at breast height (DBH) and tree height
(H) of all trees with DBH ≥ 7.5 cm were manually measured
with a caliper and a Vertex III dendrometer. When modeling
with LiDAR, circular plots are recommended (White et al.,
2013) since they are easier to establish (Adams et al. 2011)
and the edge effects are reduced (Wulder et al. 2012). We

evaluated N, BA, and QMD stand variables. The inventory
was carried out at the same time as the LiDAR acquisition
survey (2009).

2.2.2 LiDAR data

The LiDAR flight covered the entire study area with an aver-
age density of 6 points/m2 and a minimum of 1.6 points/m2

which has proven to be appropriate to derive a digital terrain
model (DTM), stand volume, or canopy metrics (Jakubowski
et al. 2013). The flight details are summarized in Table 2.

Matching and adjustment of LiDAR flights were carried
out using TerraMatch software (Terrasolid 2021a), and point
classification was performed using TerraScan software
(Terrasolid 2021b). A DTM and a digital surface model
(DSM) were built with a 1-m cell grid following two steps:
(i) automatic and manual detection of atypical points and (ii)
automatic ground/not-ground point classification. For the sec-
ond step, the point cloud was filtered out, bare ground points
were automatically extracted with TerraScan software and

Fig. 1 Location of Valsaín
pinewood in Europe and study
area delimitation (Valsaín
pinewood). Forest Management
Units (FMUs) are defined, and
field inventory plots are
represented with triangles

Table 1 Characteristics of Forest Management Units (FMUs) in the
study area

Response variables Mean Min Max Mean Min Max

FMU 1 FMU 2

N 680.3 75.3 2147.2 515.85 183.3 1148.9

BA 41.2 14.3 91.0 42.3 18.8 79.3

QMD 30.6 13.9 63.5 34.8 19.1 54.6

FMU 3 FMU 4

N 711.6 150.7 1958.8 393.02 150.7 1148.9

BA 45.3 17.3 82.3 36.9 17.7 61.5

QMD 31.2 17.7 49.6 36.4 19.6 56.5
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visually checked for verification, and the point cloud was
classified into two single classes: ground and vegetation
points.

2.2.3 LiDAR metrics

A set of elevation metrics were derived from the LiDAR point
cloud using FUSION software (McGaughey 2018). LiDAR
point cloud metrics corresponding to field inventory plots
were extracted based on the circular areas of 13-m radius.

We initially defined 43 LiDAR metrics related to height,
height variability, vegetation cover (Lefsky et al., 2005), and
number of returns (Hawbaker et al. 2010; Bater et al. 2011;
Woods et al. 2011) (Table 3). A 2-m threshold was applied to
remove ground and understory (Bouvier et al. 2015), consid-
ering an appropriate approach when studying mature, conifer-
ous forests (White et al. 2013). A post-mission quality check
assessment to evaluate the final product was performed for
LiDAR point-cloud metrics as recommended in White et al.
(2013).

2.3 Methods

2.3.1 Area-based approach

For the prediction of forest variables in the ABA, we applied
linear regression models with N, BA, and QMD as Z vari-
ables, while 43 preselected LiDAR metrics were tested as
auxiliary variables (Table 3). Linear relationships were built
with no variable transformation or by using (i) the exponential
model (Eq. 1), which assumes a linear relationship between
the log transformation of the Z variable and the auxiliary var-
iables (Næsset 2002; Frazer et al. 2011; Bouvier et al. 2015):

ln bZ� �
¼ β0 þ ∑

p

j¼1
β jX j ð1Þ

and (ii) the potential model, which assumes a linear relation-
ship between the log transformation of both Z and auxiliary
variables (Eq. 2).

ln bZ� �
¼ β0 þ ∑

p

j¼1
β jln X j

� � ð2Þ

In each FMU, we carried out a preselection of those
LiDAR metrics that present a priori relationship with each
response variable based on the literature and the expert knowl-
edge of stand structure and dynamics. We then analyzed the
Pearson correlation coefficient between LiDAR metrics and
the Z variables to identify those metrics with the highest cor-
relation with each response variable. This preselection step
provided a set of ten LiDAR variables for each variable and
FMU. To obtain the definitive set of predictors for each re-
sponse variable (N, BA, and QMD), different combinations of
no more than four variables were tested by comparing the
Akaike information criterion (AIC) calculated by the
StepAIC function implemented in MASS R package

Table 2 LiDAR flight plan parameters

Parameters Value

Date of survey June 2009

ALS sensor Leica ALS60

Height 1117 m

Measured length 442 km

Pulse repetition frequency (PRF) 933.3 Hz

Scanning frequency 67.9 Hz

Field of view 26°

Flight speed 85 m/s

Table 3 LiDAR metrics
considered for modeling LiDAR metrics Acronym

Height minimum, maximum, mean, mode, stddev, variance, CV,
IQ, skewness, kurtoris, AAD

hmin, hmax, hmean*¸ hmode*, hstd, hvar, hcv¸
hiq, hskw*, hkur, haad,

Height percentile metrics from 01 to 99 h01 to h99*

Percentage of first returns above mean, mode, and 2m PFRAhmean*, PFRAmode, PFRA2*

Percentage of all returns above mean, mode, and 2m PARAhmean*, PARAhmode, PARA2

(All returns above mean)/(Total first returns) * 100

(All returns above mode)/(Total first returns) * 100

(All returns above 2m)/(Total first returns) * 100

ARAhmeantotal100, ARAhmodetotal100,
ARA2total100

First returns above mean, mode, and 2m FRAhmean, FRAhmode, FRA2

All returns above mean, mode, and 2m ARAhmean, ARAhmode, ARA2

Total first returns tfr

Total all returns tar

*Metric inclusion in modeling
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(Venables and Ripley 2002), discarding redundant variables
(Ayrey and Hayes 2018). Seven outliers were detected and
filtered out in six models.

In order to determine the final model to be used, we studied
the performance of the three models, selected for each re-
sponse variable and FMU: without variable transformation,
with log transformation of Z variable, and with log transfor-
mation of Z and LiDAR variables, by comparing the coeffi-
cient of determination (R2), Pearson coefficient (ρZ,X) and
bias. These coefficients were calculated as follows:

R2 ¼ 1−
∑
n

i¼1
Zi−bZi

� �2
∑
n

i¼1
Zi−Zi

� �2 ð3Þ

ρZ;X ¼ σZX

σZσX
ð4Þ

bias %ð Þ ¼
1

n
� ∑

n

i¼1

bZi−Zi

� �
Zi

� 100 ð5Þ

where n is the sampling size; Zi is the observed value of var-
iable Z; bZ i is the predicted value of variable Z; σZ,X is the
covariance of Z and auxiliary variable X; σZ is the standard
deviation of Z variable; and σX is the standard deviation of X.

Back-transformation was necessary previous to validation.
As a systematic bias is introducedwith log-transformation, the
application of a model correction factor (CF) was necessary
(Bouvier et al. 2015):

CF ¼ exp
SEE2

2

� �
ð6Þ

where SEE is the standard error of regression estimates ob-
tained with lm function in stats R package (Wilkinson and
Rogers 1973; Chambers 1992; R Core Team 2019).
Therefore, the back-transformation would be (Eq. 9) for the
exponential model, and (Eq. 10) for the potential model.

bZ ¼ eβ0 ∏
p

j¼1
eβ j�X j

 !
� CF ð7Þ

bZ ¼ eβ0 ∏
p

j¼1
X j

β j

 !
� CF ð8Þ

A leave-one-out cross-validation was carried out to assess
model accuracy, estimating the Pearson coefficient, the bias,
and the RMSE (%) through Eqs. 4, 5, and 9.

RMSE %ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1

bZi−Zi

� �2r
Zi

� 100 ð9Þ

2.3.2 Universal kriging approach

In the UK model, the variable value Z(s0) at the location s0 is
expressed as the sum of a mean function of the auxiliary var-
iables Xj (s0) and a spatially autocorrelated residual δ(s0):

Z s0ð Þ ¼ ∑
p

j¼0
β jX j s0ð Þ þ δ s0ð Þ ð10Þ

We used as Z variable the field-based N, BA, or QMD (or
the log transformation of these variables) and as auxiliary
variables, Xj (s0), the intercept and the LiDAR-derived vari-
ables. As the mean function establishes linear relationships
between the Z variable and the auxiliary variables, analogous
to those of ABA models, the same variable selection and
transformations applied for ABA were applied as well for
UK (Table 4).

The UK prediction of variable Z at location s0 is a linear
combination of values Z in sampling locations si correspond-
ing to the field plots:

P Z; s0ð Þ ¼ ∑
n

i¼1
λiZ sið Þ ð11Þ

The coefficients λi that weight each observed value Z(si)
are calculated minimizing the prediction error under the unbi-
asedness condition (Cressie 1993). The kriging variance can
be calculated as (Cressie 1993):

σk s0ð Þ ¼ ∑
n

i¼1
λiγ s0−sið Þþ ∑

p

j¼0
m jX j s0ð Þ ð12Þ

To calculate λi, the variogram (d) is needed (where d is the
distance between locations). Under UK (d) can be estimated
from the residual semivariance:

γ dð Þ ¼ 1

2n dð Þ ∑
n dð Þ

i
δ sið Þ−δ si þ dð Þð Þ2 ð13Þ

Restricted maximum likelihood (REML) was applied for
the simultaneous estimation of the coefficients of the mean
function and the parameters of the variogram (Harville 1974;
Mardia and Marshall 1984). Visual inspection of the residual
variogram was used for selection of the variogram model.
Finally, the spherical variogram model was fitted for all the
variables analyzed.

In those models where log-transformations were applied,
lognormal kriging (Dowd 1982) was used. The unbiased esti-
mator of Z(si) when the UK prediction is carried out using the
log-transformed variable is given in Eq. 14 (Cressie 2006):

bZ s0ð Þ ¼ exp P ln Zð Þ; s0ð Þ þ σk s0ð Þ=2− ∑
p

j¼0
m jX j s0ð Þ

 !
ð14Þ

where bZ s0ð Þ is the unbiased back transformation of P(ln(Z);
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s0), which is the UK leave-one-out prediction at validation
plot s0, and mj are the Lagrange multipliers to ensure the

condition ∑
n

i¼1
λi X j sið Þ¼X j s0ð Þ.

Leave-one-out cross-validation of the UK model was car-
ried out in order to compare the results of the ABA and the UK
approaches. The geostatistical analysis was implemented
using the software package Geostat developed in Matlab®
by the authors.

2.3.3 Comparison of ABA and UK

The bias (Eq. 5), Pearson coefficient between estimated and
observed values (Eq. 4), and RMSE (Eq. 9) for the leave-one-
out cross-validation residuals of the ABA and UK models
were used to compare the results from both approaches. Box
plots were used to compare the prediction errors of both ABA
andUKmodels for each FMU and variable, estimated through
SEE and σk, respectively.

3 Results

3.1 Area-based approach

Exponential models were fitted for N in FMUs 1, 2, and 3, and
BA in FMUs 1 and 3. QMD models were linear in all the
FMUs, whereas in FMU 4, the models were linear for all the
variables analyzed (Table 4). In every N model, regardless of
the FMU, the LiDAR variables included were related with
cover fraction (PFRA2 or PARA2) and mid to high height
elevation percentiles (missing in the FMU 2 where we found

height mode instead). In BA models, the most frequent vari-
ables included were h20 and PFRA2 (FMUs 1 and 3). In the
case of QMD, the variables included were h40 in forest units I
and II and h70 in FMUs 3 and 4 (Table 4).

3.2 Universal kriging approach

REML estimations of variogram parameters for N, BA, and
QMD for each FMU are shown in Table 5. The ratio from the
residual variogram partial sill to the empirical variogram sill
represents the variance linked to spatial autocorrelation
(Montes and Ledo 2010), which is maximum in FMU 4 for
all the analyzed variables and minimum in FMU 3 (Fig. 2 and
Table 5). The spatial correlation ranged from 141 m in FMU 1
to 2101 m in FMU 4 for N, from 978 m in FMU 2 to 11556 m
in FMU 4 for BA and from 1299 in FMU 1 to 4576m in FMU
2 for QMD. The variance explained by the LiDAR variables
(estimated as a ratio from the linear combination of
variograms and cross-variograms of the auxiliary variables
weighted by their β coefficients to the empirical variogram
sill) is lower than the variance linked to spatial autocorrela-
tion, for QMD in FMUs 1 and 3, and BA in FMU 3, whereas
the LiDARmetrics stand for more than 50% of the variance of
N in FMUs 2 and 3, QMD in FMU 2, and BA in FMU 4 (Fig.
2).

3.3 Comparison of ABA and UK approach

FMU 4 shows the lowest correlation between estimates and
field observations in both approaches (Fig. 3, Table 6) where-
as FMU 2 showed the highest correlation, reaching R2 values
up to 73% in QMD. UK obtains better R2 and RMSE results

Table 4 Final models for stand structure variables (Z variables) applying area-based approach (ABA) for stem density (N), basal area (BA), and
quadratic mean diameter (QMD)

Z Coefficients SEE Coefficients SEE

β0 β1 β2 β0 β1 β2

FMU 1 FMU 2

N 5.65 − 0.05 0.02 0.49 5.57 − 0.04 0.02 0.40
N ¼ eβ0 ∙eh50∙β1 ∙ePFRA2 ∙β2 ∙CF N ¼ eβ0 ∙ehmode ∙β1 ∙ePARA2 ∙β2 ∙CF

BA 2.54 0.03 0.01 0.24 15.18 0.88 1.36 7.54
BA ¼ eβ0 ∙eh20∙β1 ∙ePFRA2 ∙β2 ∙CF BA=β0+β1 ∙hkurto +β2 ∙h40

QMD 13.14 1.22 6.64 12.75 1.42 6.56
QMD=β0+β1 ∙h40 QMD=β0+β1 ∙h40

FMU 3 FMU 4

N 4.14 0.03 − 0.04 0.38 233.7 − 14.98 11.67 128
N ¼ eβ0 ∙eh70∙β1 ∙ePFRA2 ∙β2 ∙CF N=β0+β1 ∙h95+β2 ∙PARAhmean

BA 1.63 0.02 0.03 0.23 − 3.53 4.75 0.63 8.16
BA ¼ eβ0 ∙eh20∙β1 ∙ePFRA2 ∙β2 ∙CF BA=β0+β1 ∙h05+β2 ∙PFRAhmean

QMD 10.92 1.13 6.17 20.08 1.52 7.95
QMD=β0+β1 ∙h70 QMD=β0+β1 ∙h70
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(and similar bias) than ABA for those variables exhibiting
strong spatial autocorrelation in those FMUs where linear
models were fitted (QMD in FMU 2 and all variables—N,
BA, and QMD—in FMU 4). ABA and UK showed very
similar results for the remaining combination of FMU and
variables where linear relationships were fitted. Lognormal
kriging for BA in FMU 1, where this variable also exhibited
spatial autocorrelation, improved R2 and RMSE over ABA
(from R2 = 0.66 and RMSE = 0.25 with ABA to 0.72 and
0.23 respectively with lognormal universal kriging) at the ex-
pense of an increase of bias (from 0.31 with ABA to 1.89 with
lognormal universal kriging). Lognormal kriging point predic-
tion bias was less than 2% for all the variables.

Regarding the prediction errors (Fig. 4), we observe that in
every studied model, UK presents a lower error average than
ABA, as well as a wider interquartile range of prediction var-
iances due to the effect that the varying distance between plots
produces in the final UK prediction.

4 Discussion

Both the ABA and UK approaches have proved to be useful
techniques for integrating field sampling and LiDAR data in
forest inventories showing reasonable bias, RMSE, and
Pearson coefficient between observed and estimated values

Table 5 Spherical variogram
model parameters and trend
function coefficients with their
respective p-values for stem
density (N), basal area (BA), and
quadratic mean diameter (QMD)
in universal kriging models

Responsevariables Auxiliaryvariables βn p-
value

Nugget Sill Range

FMU 1

Log(N) Intercept 5.65 0.50 0.15 0.07 141.15
h50 − 0.05 0.00

PFRA2 0.02 0.00

Log(BA) Intercept 2.58 0.50 0.04 0.014 7297.63
h20 0.03 0.00

PFRA2 0.01 0.00

QMD Intercept 13.04 0.50 40.92 2.07 1299.37
h40 1.23 0.00

FMU 2

Log(N) Intercept 5.55 0.50 0.06 0.10 1540.77
hmode − 0.04 0.00

PARA2 0.02 0.00

BA Intercept 15.30 0.50 40.33 13.18 978.43
hkurto 0.85 0.00

h40 1.36 0.00

QMD Intercept 8.50 0.50 15.80 49.57 4575.68
h40 1.70 0.00

FMU 3

Log(N) Intercept 4.15 0.50 0.00 0.13 223.59

h70 − 0.04 0.00
PFRA2 0.03 0.00

Log(BA) Intercept 1.67 0.50 0.04 0.004 3048.15
h20 0.03 0.00

PFRA2 0.02 0.00

QMD Intercept 11.06 0.50 33.07 3.17 2645.53
h70 1.12 0.00

FMU 4

N Intercept 259.46 0.50 10495.17 4200.22 2101.59
h95 − 16.11 0.014

PARAhmean 11.30 0.001

BA Intercept − 17.80 0.32 36.54 76.80 11556.32
h05 4.24 0.001

PFRAhmean 1.01 0.000

QMD Intercept 18.52 0.50 32.06 26.50 2352.61
h70 1.67 0.00
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for modeling N, BA, and QMD. Our results show that the UK
approach may increase the accuracy for those variables
exhibiting spatial autocorrelation beyond the distance between

sampling plots. The spatial correlation of the analyzed vari-
ables depends on the spatial variations of site conditions, dis-
turbance regime, stand regeneration, and development

Fig. 2 Universal kriging variogram model γ (discontinuous line) fitted to
the residual variogram (hollow circles) and linear combination of the

fitted variogram model and ∑n dð Þ
i ∑

p

m¼1
∑
p

j¼1
β j βm X j sið Þ−Xm si þ hð Þ� �

2 (continuous line) vs empirical semivariogram (filled circles) of the

stem density (N), basal area (BA), and quadratic mean diameter (QMD)
in a Forest Management Unit 1 (FMU 1), b FMU 2, c FMU 3, and d
FMU 4
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processes and management. FMU 4 presents the greater
amount of variance explained by autocorrelation for the ana-
lyzed variables, possibly due to the lack of silvicultural treat-
ments in this FMU covering high altitude protection areas,
where variability in forest structure is due to changes in the
ecological conditions and the natural dynamics, in contrast to
the man-induced forest structure in the other managed FMUs,
where group shelterwood is applied at forest compartment
level, leading to a shorter spatial autocorrelation range.

The Pearson coefficients from the cross-validation for N,
BA, and QMD attained through ABA are in general within the
range reported in other studies (from 0.38 to 0.67 for N (Silva
et al., 2018; Hall et al. 2005), from 0.78 to 0.93 for BA
(Hall et al. 2005; Reutebuch et al., 2005; Silva et al.,
2017), or from 0.39 to 0.78 for QMD (Næsset 2002).
However, in FMU 4, which covers the high elevation
areas with a more complex forest structure (due to the
natural disturbance regime), ABA showed poorer corre-
lations. In this FMU, UK performs better than ABA in
terms of Pearson correlation and RMSE (Table 6).
LiDAR cover and height percentiles are often the met-
rics that show the greatest correlation with those vari-
ables related to stand growing stock (Means et al.
2000). In our case, h20 had the greatest explanatory
power in the BA models and medium-to-high percen-
tiles (h50, h70, and h95) in N models. Height percentiles
are usually correlated, and the inclusion of one or an-
other may depend on the stand structure and the LiDAR
characteristics. Furthermore, metrics associated with
crown cover, such as PFRA2, PARA2, PFRAhmean, and

PARAhmean, were also relevant for N and BA. The in-
clusion of spatial pattern measures of pulse returns by
height strata may improve the estimations of N and
QMD.

In most studies, N estimates show the weakest correlation
with LiDAR metrics (Næsset 2002; Goerndt et al. 2010;
Hayashi et al. 2014). This may explain the lower Pearson
coefficient and RMSE both for ABA and UK (Table 6). The
lack of spatial autocorrelation may explain the poor perfor-
mance of UK for in FMUs 1 and 3, where managed
polewoods and regenerating stands predominate (Table 6).
On the contrary, in FMU 4, a high mountain forest under
natural disturbance regime, the variograms show a noticeable
spatial autocorrelation of the analyzed variables beyond 2000
m, and the UK performs much better than the ABA. The bias
problems with lognormal kriging have been widely treated in
the literature (Journel 1980; Dowd 1982; Cressie and
Pavlicová 2005; Cressie 2006; Yamamoto 2007). The
RMSE based on cross-validation residuals reported includes
the effect of bias, showing that this effect is compensated by
an estimation variance reduction when there is spatial auto-
correlation (BA in FMU 2). It should be noticed that bias is
less than 2% in all the lognormal UK models indicating the
suitability of Eq. 14 to bound bias for lognormal UK predic-
tions in our dataset. Other approaches as proposed in
Tolosana-Delgado and Pawlowsky-Glahn (2003) may over-
come the problems linked to error sensitivity in the variance
estimation of the adjustment used to preserve unbiasedness
when the kriging prediction is transformed back to the original
scale (Clark and Harper 2000).

Table 6 Comparison of area-
based approach and universal
kriging approach for stem density
(N), basal area (BA), and
quadratic mean diameter (QMD),
in terms of Pearson coefficient
between estimated and observed
values, RMSE, R2, and bias

Response
variables

Area-based approach Universal kriging

Bias
(%)

Pearson
coef.

RMSE
(%)

R2

adj
Bias
(%)

Pearson
coef.

RMSE
(%)

R2

adj

FMU 1

N 1.03 0.53 51 0.28 − 1.64 0.53 50 0.27

BA 0.31 0.66 25 0.42 1.90 0.72 23 0.51

QMD − 0.03 0.66 22 0.49 − 0.04 0.66 22 0.43

FMU 2

N 0.14 0.60 39 0.33 − 0.01 0.59 38 0.33

BA 0.07 0.84 19 0.69 0.07 0.84 18 0.70

QMD 0.09 0.76 19 0.57 − 0.25 0.86 15 0.73

FMU 3

N − 1.27 0.71 43 0.49 0.53 0.71 43 0.49

BA 0.41 0.80 20 0.64 1.49 0.81 20 0.64

QMD − 0.04 0.68 20 0.44 − 0.07 0.69 20 0.47

FMU 4

N − 0.41 0.43 37 0.15 − 0.03 0.50 35 0.22

BA 0.83 0.77 24 0.57 0.06 0.81 22 0.65

QMD 0.35 0.37 23 0.11 0.46 0.56 20 0.29
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In the UK models (as seen in Fig. 2), the variance increases
with the distance between plots; the plots nearest to the prediction
points have significant weight in the prediction (Oliver and
Webster 2014). The effect of spatial autocorrelation of both field
sampling data and LiDAR metrics over the UK estimators de-
pends on the plot size, the cell size, and the distance between plots
(Mauro et al. 2017). Therefore, increasing the number of sampling
plots may improve the estimation of the coefficients of both ABA
models and UK mean function, but for UK, there should be an
additional uncertainty reduction because the kriging variance de-
crease as the number of nearby sampling plots within the range of
spatial correlation increases (Mauro et al. 2017). Increasing the
number of plots in those FMUs where the target variables show
strong spatial autocorrelation, with a range proximal to the mini-
mumdistance between plots, would produce a greater reduction of
the UK error. This increase in the number of plots shall be accom-
panied by a plot size reduction to avoid an inventory cost rise.
Another option to reduce the distance between plots would be a
two-stage sampling design (Mandallaz and Ronghua 1999) com-
bining a denser network of terrain data points assessed through an

inexpensive methodology, such as 2D Terrestrial Laser scanner
(Ringdahl et al. 2013) or ForeStereo (Montes et al. 2019) and a
second stage of sparser accurately measured sampling plots. It
must be taken into account that point estimates are analyzed in
our study, whereas operational forest inventories usually estimate
variables at forest compartment or forest unit level. Block predic-
tions (referred to UK predictions at forest compartment or forest
unit level) should reduce substantially the estimation error
concerning the point predictions, especially in small area units,
due to the spatial correlation with nearby sampling plots (Lappi
2001). Similarly, using linear mixed-effects models with ABA
may reduce the uncertainty of estimations for small-scale (5 to
50 ha) management unit (Mauro et al. 2017).

5 Conclusions

Universal kriging (UK) integrating field sampling and LiDAR
data increased modeling accuracy with respect to the area-
based approach (ABA) in terms of RMSE and Pearson

Fig. 3 Scatterplot of predicted vs
observed values in every Forest
Management Unit (FMU) for
stem density (N), basal area (BA),
and quadratic mean diameter
(QMD) under area-based
approach (ABA) (a, c, e) and
universal kriging (UK) approach
(b, d, f). The continuous line
represents the 1:1 line
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coefficient for stem density (N), basal area (BA), and quadrat-
ic mean diameter (QMD) in Forest Management Units
(FMUs) where these variables exhibited spatial autocorrela-
tion (e.g., protection areas subjected to natural disturbance

regime). In those cases, the UK approach reduced the estima-
tion error up to 16%.

Lognormal universal kriging was superior to ABA in terms
of RMSE and Pearson correlation between cross-validation

Fig. 4 Boxplot of the prediction
errors for stem density (N), basal
area (BA), and quadratic mean
diameter (QMD) under area-
based approach (ABA) and
universal kriging (UK) approach,
estimated through the standard
error of regression estimates
(SEE) and kriging error (σk),
respectively. a N exponential
models. b N linear models. c BA
exponential models. d BA linear
models. e QMD linear models
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estimations and observed values when modeling BA in FMU
1, where this variable shows spatial auto-correlation, but bias
was, in general, higher with lognormal UK than with ABA.

In those FMU where regeneration areas and managed
polewoods predominate, we generally found low autocorrela-
tion and UK did not improve the ABA results.

Under the UK approach, an increment of the sampling
intensity along with plot size reduction would increase cost-
efficiency in those FMUs where the spatial autocorrelation
range gets closer to the plot distance.
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