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Abstract
· Key message  We used lightweight terrestrial laser scanning (TLS) to detect over 3000 stems per hectare across a 
12-ha permanent forest plot in French Guiana, 81% of them < 10 cm in trunk diameter. This method retrieved 85% 
of the trees of a classic inventory. Finally, TLS revealed that stem positions of the classic inventory had geolocation 
errors of up to 6 m.
· Context  Accurate position mapping of tropical rainforest trees is crucial for baseline studies of tropical forest ecology but 
is labor-intensive. Terrestrial lidar scanning (TLS) is broadly used in temperate forest inventories, but its use in rainforests 
is restricted to the determination of individual tree volumes within small survey areas.
· Aims  Mapping tree stems across one large (12-ha) rainforest plot, including trees less than 10 cm DBH, and evaluating 
the precision of traditional mapping approaches.
· Methods  We used lightweight TLS, co-registered the acquisitions, and developed a new efficient algorithm to process 
the TLS data.
· Results  We detected 36,422 stems of which 29,665 (81%) were < 10 cm in diameter at breast height (DBH). Of the 
trees ≥ 10 cm DBH previously censused in the plot, 85% were identified by TLS. Automatic DBH estimation from TLS data 
had an RMSE of 6 cm. RMSE was improved to 3 cm by a manual verification of the shape and quality of the stem points. 
The initial census map had substantial bias in tree geolocation with a maximum value around 6 m.
· Conclusion  Lightweight TLS technology is a promising tool for the estimation of stem tapering and volume. Here, we 
show that it also facilitates the establishment of large tropical forest inventories, by improving the positioning of trees, thus 
increasing the accuracy of forest inventories and their cost-effectiveness.
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1  Introduction

Tropical rainforests harbor a high biological diversity and 
store large amounts of carbon (Hubbell 2001; Pan et al. 
2011). Documenting the position and size of every tropi-
cal forest tree in a reference area (i.e., forest inventory) is 
fundamental for any baseline studies of tropical ecology 
and ecosystem modeling (Brienen et al. 2015; Visser et al. 
2016; Clark et al. 2017). Ground-based forest inventories 
are useful for the detection of changes in carbon storage and 
shifts in population densities (Chave et al. 2019). However, 
the monitoring of trees in structural complex forest com-
munities such as tropical rainforests is time-consuming and 
labor-intensive.

The traditional approach to mapping rainforest trees is 
through the establishment of permanent forest plots. The size 
of the plot is typically 100 × 100 m, but sometimes larger. 
Plot establishment protocols recommend to grid the plot at 
10 × 10 m or 20 × 20 m resolution, within which each stem 
is tagged and mapped visually relative to the position of 
the subplot corners. If the subplot is accurately established, 
then trees can be positioned with metric accuracy across 
the entire plot (Condit 1999; Phillips et al. 2010). How-
ever, the establishment of a grid with topographic variation 
accounted for requires a considerable time investment, and 
ideally requires total stations, but is generally based on tra-
ditional surveying based on measuring tapes. Because of the 
complex terrain, tree positioning may thus be error prone, 
meaning that the geolocation of trees as reported in forest 
inventories may be quite different from their true position.

By capturing the 3D structure of a forest understory at 
millimetric resolution, terrestrial laser scanning (TLS) has 
opened up many possibilities in forest ecology (Calders et al. 
2015; Newnham et al. 2015; Malhi et al. 2018; Disney et al. 
2018; Disney 2019; Brede et al. 2019; Lau et al. 2019). Stem 
mapping is an obvious application of TLS (Newnham et al. 
2015), and TLS has been routinely used to map stems in 

boreal and temperate forest plots (Maas et al. 2008; Yao 
et al. 2011; Tao et al. 2015; Liang et al. 2018). However, the 
stem mapping procedures developed for boreal and temper-
ate forests cannot be easily applied to tropical rainforests, 
where stem density and under-canopy structural complex-
ity can be much higher. As a result, most applications with 
TLS in tropical forests have been conducted to reveal the 
architecture of large trees (Wilkes et al. 2017; Raumonen 
et al. 2013; Burt et al. 2019; Martin-Ducup et al. 2021). 
For example, Burt et al. (2019) completed 121 acquisitions 
in a 1-ha plot with a RIEGL VZ-400 instrument, and they 
reconstructed the full 3D architecture of many large trees 
in the plot. Momo Takoudjou et al. (2018) reconstructed 61 
large trees in the tropical forests of Cameroon using a Leica 
C10 Scanstation, and Gonzalez de Tanago et al. (2018) used 
a RIEGL VZ-400 to scan 29 large trees in Guyana. While 
large trees contribute most to the above ground biomass 
of rainforest, small trees with a diameter at breast height 
(DBH) < 10 cm contribute disproportionately to the under-
story stand structure and are essential for biodiversity and 
long-term monitoring of the forest. One key challenge is that 
it is more difficult to detect smaller trees automatically in 
TLS data due to the signal-to-noise ratio. In addition, com-
monly used long-range time-of-flight TLS systems, such as 
the RIEGL VZ series, are relatively heavy (~ 10 kg), making 
it difficult to acquire high-quality scans over several hectares 
of forest (Wilkes et al. 2017). Here, we seek to assess the 
potential for lightweight TLS systems to map large plots in 
heterogeneous tropical rainforests, and to overcome the joint 
challenges of large area scanning and small tree detection.

Lightweight TLS is a recent advance in TLS technology 
(Bauwens et al. 2016; Brede et al. 2017; Qian et al. 2017). 
These lightweight scanners tend to have a reduced range 
compared to long-range scanners (Calders et al., 2020), but 
are sufficient for many applications. The Leica BLK360 
scanner (~ 1 kg, Table 1) has been tested for 3D architecture 
reconstruction of large tropical trees (Disney et al. 2019) 

Table 1   Specifications of 
the BLK360 terrestrial laser 
scanner

For more information: https://​leica-​geosy​stems.​com/​produ​cts/​laser-​scann​ers/​scann​ers/​blk360

Weight  ~ 1 kg

Height/diameter 16.5/10 cm
Effective range 0.6–60 m
Accuracy 7 mm at a distance of 20 m
Beam divergence 0.4 mrad
Point measurement rate Up to 360,000 points per second
Scanning mode Low-, medium-, and high-point density scanning, with a point 

density at 7.5 m of 20 × 20, 10 × 10, and 5 × 5 mm, respec-
tively

Horizontal/vertical field of view 360/300°
Camera RGB camera, longwave thermal camera
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and detection of small tropical trees (5–10 cm DBH; Luck 
et al. 2020).

In the present study, we aimed at cost- and time-effective 
large-area scanning and high stem detection rate, with a 
focus on accurate positioning of rainforest trees using the 
BLK360. Many plots, even those established decades ago 
and regularly re-censused, have errors in stem positioning. 
We developed a sampling scheme suitable for large area scan 
acquisition and efficient data merging with the lightweight 
laser scanner (Text 1 in the Appendix). We also implemented 
a new method to detect a broad range of stem sizes from the 
acquired point cloud. A high-resolution digital terrain model 
(DTM) was built based on these data and it was compared 
with a previously acquired airborne Lidar product. Finally, 
DBHs of the detected stems were estimated and compared 
with ground measurements. Although TLS provides rich 3D 
structural information on tree architecture, DBH is a key 
metric for forest inventory. We expect that lightweight cost-
effective TLS is capable of mapping stems more efficiently 
than classic inventories.

2 � Materials and methods

2.1 � Data acquisition

Fieldwork was conducted in October 2019 at the Nouragues 
Ecological Research Station (4° 05′ N, 52° 40′ W; www.​
noura​gues.​cnrs.​fr), French Guiana. The study area is covered 
by a closed-canopy tropical forest, and it has a mean rainfall 
of 2900 mm/year, with a dry season from late August to 

mid-November, and a shorter dry season in March (Chave 
et al. 2008). The area is nested within a Natural Reserve and 
is free from any recent human disturbance or encroachment.

The permanent plot, called “Petit Plateau,” covers 12 ha 
(400 × 300 m) and has been established in 1994. In 2012, a 
20-m grid system was established inside the plot using tapes 
and handheld compasses. All stems ≥ 10 cm DBH have been 
mapped and tagged (Chave et al. 2008), with tree species 
identification conducted in 2010–2012. The site has been 
re-censused in 2001, 2007, 2012, and 2017.

The full plot was scanned using two BLK360 laser 
scanners simultaneously, to halve acquisition time. Scan-
ner specifications are listed in Table 1. We performed one 
scan at every 20 m on the grid nodes, with scan mode set 
to high point density (Fig. 1), to balance survey efficiency 
with data accuracy. In very few cases where heavy occlu-
sion effects were encountered based on visual assessment, 
we added a middle scan at a 10-m distance from the previ-
ous one. To co-register the individual scan acquisitions, we 
used five sets of 12-cm spherical targets. The targets were 
purchased for less than 5€ each (Fig. 1c). Two sets of targets 
(light and dark blue in Fig. 1a) were displaced along the scan 
trajectory, linking the current scan (black dot in Fig. 1a) to 
the previous and next ones. The three other sets of targets 
were placed between scan lines and used as reference points 
to merge the scan lines, so as to minimize the cumulative 
error between adjacent scan lines (see Text 1 in the Appen-
dix for further details). A total of 395 scans were acquired 
across the 12-ha plot. To co-register individual TLS scans, 
the spherical targets were automatically recognized by the 
Leica Cyclone Register 360 software, with little need for 

Fig. 1   Scanning of a tropical rainforest patch with a BLK360 ter-
restrial laser scanner. a “Continuous chain” sampling design with a 
20-m-gridded scanning, illustrated in a 1-ha area. The gray arrows 
indicate the progress of the scanning, with the current scan location 
shown as a black dot. Five target sets, each having five targets, were 

used in total and are represented as colored dots. b Photograph of the 
scanner and targets placed in the field (credit: E-Ping Rau). c Close-
up images for the lightweight scanner and targets. See Appendix-Text 
1 and Fig. 18 in the Appendix for more information on how the tar-
gets were displaced with the laser scanner
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manual adjustments. The size of the final dataset was ~ 500 
Gigabytes (Gb) in “las” format.

2.2 � High‑resolution digital terrain model

Prior to stem mapping, we identified the ground points 
and built a high-resolution digital terrain model (DTM) 
(see Text 2 in the Appendix for a step-by-step instruction 
on data processing). We first extracted the lowest point in 
each 10 × 10 cm tile using the Lastools software (lastools.
org) to reduce the computational burden. We then extracted 
the ground points by calculating the minimum height differ-
ence between neighboring pairs and excluding those ≥ 50 cm 
above their neighbors (Fig. 9 in the Appendix). The filter 
was implemented in Matlab R2018b (MathWorks Inc) and 
the runtime was ~ 50 min across the 12-ha area. A DTM was 
then created at 20-cm horizontal resolution using Quick Ter-
rain Modeler (QTM) software. It was compared with a 1-m 
resolution DTM obtained in 2015 with airborne laser scan-
ning at a ground point density of 0.47 points m−2 (Labrière 
et al., in preparation).

2.3 � Stem mapping

Vegetation points were subsampled to achieve a pairwise 
distance ≥ 2 cm, to reduce the computational burden, in 
CloudCompare (danielgm.net/cc/). Point elevations were 
then recomputed relative to the DTM (“lasheight” rou-
tine). Seven height layers were defined: 0.5–1 m, 1–1.5 m, 
1.5–2 m, 2–2.5 m, 2.5–3 m, 3–3.5 m, and 3.5–4 m. The 
lowest height layer (0.5–1 m) was used for detecting small 
trees close to the ground. To detect larger trees, we explored 
the height layers above 1.5 m. We calculated the surface 
normal direction for each point, that is, the vector direction 
perpendicular to the tangent plane of the surface at a point. 
Points with a normal direction 90° ± 10° from the vertical 
were assumed to belong to stems (referred to as “potential 
stem points”). A tolerance of 10° was allowed because some 
trees are inclined.

Some non-stem points may be falsely classified as poten-
tial stem points if the features are vertical (Fig. 2a). We fil-
tered out these points by designing a filter referred to as the 
“tube filter.” For each potential stem point (black point in 
Fig. 2b), we placed a “tube” (10 × 10 cm in the xy-dimen-
sion) centered around it and searched for potential stem 
points across smaller bins immediately above and below 
it (Fig. 2b). Because stems could be insufficiently scanned 
(e.g., having no points in the top-most and bottom-most 
height layers), the tube’s vertical size was set adaptively. 
The tube filter removed many non-stem points (Fig. 2c). This 
was implemented separately on each of the five height layers 
to improve the detection rate of stem points (Fig. 2d).

The stem points detected from different height layers 
were then merged and segmented horizontally with a min-
imum distance of 10 cm between the segmented compo-
nents (i.e., putative stem). Only the segmented components 
with a vertical span ≥ 0.8 m (in the 0.5–1.5 m height class) 
and ≥ 1 m (above 1.5 m) were retained, so as to exclude 
vertical branches. The influence of the parameters on stem 
detection is discussed below. The stem detection procedure 
was implemented in Matlab.

The segmentation described above assumed that stems 
had a pairwise distance > 10 cm. Consequently, stems grow-
ing less than 10 cm apart would have been wrongly seg-
mented as one stem. To correct this under-segmentation 
error, we assessed whether each stem could be further seg-
mented using the DBSCAN algorithm, a density-based spa-
tial clustering of applications with noise. We used the default 
parameters based on our point density (2 cm between-point 
distance; Ester et al. 1996; Fig. 10a in the Appendix). We 
also visually checked all stems ≥ 50-cm trunk diameter (see 
below for diameter calculation), which are likely to be seg-
mented into more than one component (over-segmentation 
error; Fig. 10b in the Appendix). Visual inspection took one 
person about 4 h for the 12-ha area. To quantify the rate of 
false positives (i.e., number of false stems), we selected five 
subregions in the four corners and center of the 12-ha plot 
(Table 2; Fig. 11 in the Appendix). In these five regions, 
TLS-detected stems were visually inspected against the raw 
point cloud to decide which stem was a false-positive error.

2.4 � Stem diameter calculation

We calculated a proxy of trunk diameter by extracting the 
stem dimensions along both horizontal axes (referred to as 
the “xy-range” approach; Fig. 3a). Specifically, we calcu-
lated the average of x- and y-ranges every 10 cm along the 
vertical axis of each stem and took the median value as a 
final estimate of stem diameter — this method alleviates the 
influence of noisy points or missing stem points on DBH 
estimation and uncertainties in the estimated DBHs for lean-
ing stems. The “xy-range” approach can be inaccurate for 
partially scanned stems or giant stems with buttresses or stilt 
roots, because we used the stem section from the ground to 
4 m aboveground. We then also designed a semi-automatic 
approach for DBH estimation. The vertical principal axis 
of each stem (growth direction) was determined by a rota-
tion, and the stem points were then projected to the plane 
perpendicular to the vertical principal axis. This ensures 
an accurate determination of DBH for leaning stems. We 
manually selected points of the stem’s outer region and fit-
ted a circle if the stem was partially scanned (Pueschel et al. 
2013; Fig. 3c), or calculated a diameter D from the basal 
area BA if the stem was irregularly shaped or buttressed: 
D = (4 BA/𝜋)1/2 (Fig. 3b). The semi-automatic approach was 
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Fig. 2   Automatic stem detec-
tion from TLS. a Stem points 
identified by surface normal cal-
culation. Some leaf points were 
falsely identified as stem points. 
b The “tube filter” to filter out 
non-stem points. The tube filter 
was applied on each red point 
shown in a. c Stem points after 
the implementation of the tube 
filter. d Continuous detection of 
stem points at different height 
layers. Three layers (red, yellow, 
and blue) are shown here as 
examples

Table 2   False-positive errors of 
the light TLS-detected stems in 
five regions of the 12-ha plot. 
See Fig. 11 in the Appendix for 
more information

Region Size Number of stems Number of false-
positive stems

False-
positive rate 
(%)

Region 1 (plot center) 1415 m2 (40 × 35 m) 575 22 3.8
Region 2 (upper left) 1480 m2 (41 × 40 m) 337 12 3.6
Region 3 (lower left) 1480 m2 (42 × 35 m) 386 15 3.9
Region 4 (upper right) 1272 m2 (40 × 33 m) 286 11 3.8
Region 5 (lower right) 1444 m2 (41 × 35 m) 463 20 4.3
All regions 7091 m2 2047 80 3.9
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tested on five hundred randomly selected stems. For large 
stems (above 1 m DBH), trunk diameters were measured in 
the field at a tree-specific height to avoid the influence of 
buttress and stilt roots (Condit 1998; Cushman et al. 2021), 
but this height was not precisely recorded for all large stems. 
We therefore calculated their TLS-based diameters every 
1 m along the z axis up to 13 m and selected the best match 
with field values.

2.5 � Comparison between TLS‑derived 
and field‑censused stem maps

We compared the TLS-derived stem map against a field census 
of the Petit Plateau plot carried out in November 2017, ca. 
2 years before the laser scanning campaign. During the census, 
the stems ≥ 10 cm DBH were manually geolocated relative to 
the subplot corners. These were compared with TLS-derived 
stem locations, calculated as the mean coordinates of the stem 
points. We visually paired TLS-derived and field-recorded 
stem geolocations. The process was seeded using large trees 

for which locations could be unambiguously matched (~ 1000 
trees), which were used as anchor points for further tree match-
ing. To aid the process of stem pairing, we updated the posi-
tion of each ground-censused stem based on triangulation of 
its nearby anchor points. If the updated position showed a 
high similarity with a TLS-derived stem, a new pair of anchor 
points was established. The visual pairing process was con-
ducted within 1-ha subplots, then within ¼-ha subplots. This 
approach was repeated until no more trees could be matched 
with high confidence.

Using the visually paired geolocations, a bias map in 
tree geolocation was generated for the 12-ha plot. This was 
achieved by calculating the biases in positions of ground-cen-
sused stems along both the coordinates and interpolating the 
biases across the plot at 1-m resolution using nearest-neighbor 
interpolation. 

Finally, we compared TLS-derived and field-recorded 
DBHs by plotting them against each other and calculating 
common measures of goodness-of-fit such as root mean square 
error (RMSE).

Fig. 3   TLS-based DBH estima-
tion. a The “xy-range” approach 
computing a surrogate of DBH: 
x- and y-ranges were measured 
and averaged every 10 cm 
along the z axis of each stem, 
and the median was used as a 
surrogate of stem diameter. b 
The semi-automatic approach of 
DBH estimation for large-sized 
trees. Border points on the stem 
cross-section were manually 
selected and basal area BA 
was estimated, then the stem 
diameter D was computed from 
the formula BA = 𝜋D2/4. c Semi-
automatic DBH estimation for 
insufficiently scanned stems. 
If possible, stem points were 
manually selected and a circle 
was fit to the points, resulting in 
an estimate of DBH
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3 � Results

Using two BLK360 instruments, 18 days of fieldwork and 
six persons were needed to complete the survey of the 
12-ha plot (that is, about 10 person-days per ha). Post-
processing of the 395 TLS scans (mainly stitching and 
subsampling) required ~ 3 days of lab work for one person 
using the Cyclone Register 360 software and CloudCom-
pare. The stem detection procedure required 10 h of pro-
cessing time using the newly developed Matlab routine.

Across the 12-ha plot, the TLS-based DTM had similar 
patterns compared with that inferred from airborne Lidar 
(Fig. 4), but captured more fine-scale variations of the 
terrain. For instance, the steep terrain in one corner of the 
plot was better captured by TLS than by airborne Lidar.

The stem mapping procedure detected 36,422 
stems (Fig. 5). Of these, 29,665 (81%) had an inferred 
DBH < 10 cm. About 6% of the stems were under-seg-
mented, and the DBSCAN procedure corrected this 
(Fig. 10a in the Appendix). About 120 large stems were 
visually confirmed as over-segmented, and this was manu-
ally corrected (Fig. 10b in the Appendix). The DBH-size 
distribution of the TLS-detected stems was log-normal, 
peaking around 3.5 cm (Fig. 5a). It follows that small trees 
less than about 4 cm in DBH cannot be fully mapped by 
this procedure. The false-positive rate of stem detection 
was estimated to be 3.9% (Table 2).

We compared the spatial patterns of ground-measured 
and TLS-detected stems. A total of 85% of the ground-
inventoried stems ≥ 10 cm DBH (5104 out of 6027) were 
identified in the TLS-derived stem map (Fig. 6). The com-
parison also revealed the existence of geolocation biases in 

Fig. 4   TLS-derived digital terrain model (DTM) at 0.2-m resolution 
(top) versus airborne Lidar-derived terrain model at 1-m resolution 
(bottom). Terrain elevation was normalized to have a minimum value 
of zero. For more information on DTM generation, see Fig.  9  and 
Text 2 in the Appendix

Fig. 5   TLS detection of tree stems. a A histogram shows the DBH 
distribution of the detected stems with DBH calculated using the “xy-
range” approach (see Fig. 3a). The black line is a fit of a log-normal 
distribution. The red lines mark the peak of the log-normal distribu-

tion (3.5 cm) and the 10-cm threshold. b Forest point cloud colored 
in a blue-yellow color gradient based on the z-values of the points. c 
Same as b, but with the TLS-detected stems indicated in orange
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the position of ground-censused trees (Fig. 6). The biases 
in both the horizontal coordinates of ground-positioned 
stems were generally lower than 6 m, with a maximum 
value of 6.8 m (Fig. 7).

TLS-inferred DBHs, as calculated using the “xy-range” 
approach, correlated strongly with field-recorded values 
(R2 of 0.87), with an RMSE of ~ 6 cm, although the pro-
cedure over-estimated DBH for a few large trees (Fig. 8a). 

The semi-automatic approach largely improved the accu-
racy of DBH estimation (~ 3 cm RMSE; Fig. 8b). It also 
reduced the bias in large DBH values (~ 7 cm RMSE; 
Fig. 8c). However, for three large stems, all three with 
huge buttresses, their estimated DBHs still differed with 
field recorded values by as much as 20 cm; manual veri-
fication of the point cloud suggests possible errors in the 
field recorded DBHs of these three large trees.

Fig. 6   Spatial location of 5104 TLS-detected stems (light pink) and ground-censused stems (green). Circle size is proportional to tree size, and 
only trees ≥ 10 cm DBH were mapped

Fig. 7   Bias in the geolocation of 
ground-censused stems: along 
the x axis (a) and along the y 
axis (b). This bias was inferred 
from 5104 pairwise differences 
of geolocations (see Fig. 6) and 
further interpolated across the 
entire plot
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4 � Discussion

4.1 � Stem mapping in rainforests

One hectare of tropical rainforest can have 300–1000 
trees ≥ 10 cm in DBH (DeWalt & Chave 2004). If all individ-
uals ≥ 1 cm DBH are considered, these numbers can be up to 
10 times higher (Condit et al. 1999). The initial census of a 
typical 1-ha plot of tropical rainforest for all stems ≥ 10 cm 
DBH represents a significant investment: based on expert 
knowledge (Duncanson et al. 2021), it requires ca. 75 per-
son-days and costs ca. 18 k€, including direct costs (such as 
travel, labor cost, and fieldwork) and indirect costs (mainly 
manpower for quality assessment, botanical expertise, and 
data management). Less than half of this investment is in 
actual fieldwork. These figures match well with inventories 
in French Guiana forests, and the establishment of the 12-ha 
permanent plot at Nouragues has required an estimated 900 
person-days. The investment increases dramatically if small-
sized trees < 10 cm DBH are to be surveyed (Hubbell 2001).

Lightweight TLS is a promising, companion solu-
tion to classic inventories. One lightweight laser scanner 
costs around 22 k€ (Leica Cyclone Register 360 software 
included), which is much cheaper than large TLS systems 
such as the RIEGL VZ-400. The delivery of a TLS-derived 
stem map required ca. 10 person-days of fieldwork per hec-
tare (two or three persons achieving 1 ha within 3 or 4 days; 
Text 1 in the Appendix) and less than four person-days of 
subsequent data processing (including the time cost of scan 
co-registration, subsampling, and stem detection). Impor-
tantly, TLS data allow the detection of small-sized trees in 
the range 4–10 cm DBH.

The above comparison of the cost of TLS-based stem 
mapping and classic field inventory shows that TLS, despite 
faster mapping, remains a relatively expensive option in 
complex forest settings such as tropical forests. However, 
given the advances in this technology, it is possible that costs 
will further decline in the future. For instance, handheld 
TLS devices could avoid the need to co-register the TLS 
scenes, thus avoiding the need of displacing the targets, 
which currently represents about half of the workload. TLS 
technology obviously cannot replace manual field invento-
ries: trees need to be tagged physically, TLS systems cannot 

identify tree species, and it remains unrealistic to correctly 
detect all small stems (> 1 cm DBH) from TLS data. Rather, 
the present study shows that TLS can be used to reduce the 

Fig. 8   Comparison between ground-measured and TLS-estimated 
DBH. a TLS-based versus field measured DBH for 5104 stems, 
with the TLS-based DBHs estimated using the “xy-range” approach 
(Fig. 3a). b TLS-based versus field measured DBHs for five hundred 
randomly selected stems, with the TLS-based DBHs calculated using 
a semi-automatic approach shown in Fig. 3b and 3c. c TLS-based ver-
sus field measured DBHs for large stems (above 1 m DBH as initially 
estimated by the “xy-range” approach). TLS-based DBHs were still 
calculated using the semi-automatic approach but every 1 m along the 
z axis up to 13 m, and the best match with field values was used here

▸
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investments of classic inventories, by providing high-accu-
racy geolocations of many trees in a plot.

4.2 � Stem mapping with TLS

Cylinder fitting is a classical method to detect stems from the 
point cloud data, but the stem points of small trees usually 
do not conform to a cylindrical shape. Thus, a new method 
to detect tropical stems from point cloud data was developed. 
The method detected ~ 3000 stems per hectare in large old-
growth tropical forest plots. Most tropical stems with a DBH 
as small as 4 cm can be detected (Fig. 5). The method has 
four main parameters, including one for identifying ground 
points and three for mapping stems.

To separate ground points from vegetation points, the 
“lasground routine” as implemented in the “lastools” soft-
ware has been widely used (Korzeniowska et al. 2014). 
However, “lasground” was initially designed for airborne 
Lidar. Although recently upgraded for processing TLS data, 
we found that the output from “lasground” falsely included 
some vegetation points when applied to our data (Fig. 9a in 
the Appendix). We therefore designed a filter by calculating 
the minimum height difference (z-diff) between each point 
and its neighbors in the xy-dimension. True ground points 
will have a low z-diff in contrast with vegetation points 
(Fig. 9 in the Appendix). By thresholding the z-diff using 
a histogram, true ground points can be separated from the 
vegetation points. In our case, we found a natural threshold 
of around 20 cm (Fig. 9c in the Appendix). However, we set 
the threshold at 50 cm to check whether woody debris, an 
important component of the tropical carbon cycle, can be 
detected. The results (Fig. 4) indicated the capability of our 
approach to detect woody debris, shedding light on using 
lightweight TLS to study the structure and volume of woody 
debris in tropical rainforests.

We then calculated the surface normal of each point. 
Stem points have horizontal surface normals, unlike most 
leaf points, so we could remove many leaf points based on 
this consideration. To further remove leaf points, we noticed 
that stem points usually have neighboring stem points above 
or below, or both, but leaf points do not. Based on this con-
sideration, we designed a “tube filter” that checks whether 
potential stem points exist continuously along the z axis. The 
filter was applied on each height layer with a vertical span of 
50 cm. It was less challenging and less computer intensive to 
detect leaning or insufficiently scanned stems with a 50-cm 
layer than using the 350-cm vertical range. The horizontal 
dimension of the tube was set to 10 cm: this threshold was 
chosen because most trees grow at least 10 cm away from 
neighboring trees. We also tested the sensitivity of the “tube 
filter” using a 15-cm tube in a subplot (1 ha in area), which 
showed little difference in the number of detected stems 
(Fig. 12 in the Appendix).

After filtering, the stem points were segmented into indi-
vidual components distant horizontally by at least 10 cm. 
Here, a larger distance threshold would produce less stem-
like features (under-segmentation) and a smaller distance 
more “stems” (over-segmentation). For the tropical forests in 
our study, the 10-cm threshold provided satisfying accuracy 
with ~ 6% under-segmentation errors which can be largely 
corrected by DBSCAN (Fig. 10a in the Appendix).

Some of the segmented vertical features were not true 
stems but rather vertical branches. We therefore used the 
vertical span of the vertical feature to filter out “short” fea-
tures which are presumed to be branches. The lower the 
threshold, the more vertical features can be identified, but 
possibly including more false stems (Fig. 13 in the Appen-
dix). To be conservative, we set a high threshold at 1 m for 
stems detected from the 1.5–4-m height layers, and 0.8 m 
for those detected from the 0.5–1.5-m height layers. These 
two values generated low false-positive errors in rainforests 
(3.9%; Table 2).

The 3.9% false-positive error rate obtained here, already 
low, could potentially be further reduced. Most of the false-
positive stems have points from only two of the seven height 
layers between 0.5 and 4 m (Fig. 11c in the Appendix), thus 
could be detected by setting a threshold in the number of 
height layers of a stem. Further work will focus on reduc-
ing the false-positive error rate, omission errors, and over-
segmentation errors of large stems (Fig. 11 in the Appen-
dix). Efforts will also be made to detect more accurately 
multi-stemmed trees, forked stems, and palm trees which 
have clustered and angled leaflets.

4.3 � Comparison with ground inventory

Comparing the stem map with ground mapping and meas-
urement of trees ≥ 10 cm in DBH showed promising results 
(Fig.  6). We found that 85% of the ground-inventoried 
stems were identified in the TLS-derived stem map. This 
is similar to the 86% stem detection rate reported by Cal-
ders et al. (2018), for 6 ha scanned in Wytham Woods, UK, 
using a Riegl VZ 400 TLS. The 15% omission error can 
be explained by two facts. First, there is a 2-year time lag 
between the TLS scan (in 2019) and the field inventory (in 
2017). Tree-fall events during the 2 years can contribute 
to the mismatch. Another important factor is the occlusion 
effect (Wilkes et al. 2017), i.e., some stems were occluded 
by others and thus were not, or insufficiently, scanned. The 
occlusion effect can be reduced by using a denser scan 
grid (e.g., 10 × 10 m rather than 20 × 20 m), but at the cost 
of lower survey cost-efficiency. Most small trees with a 
DBH < 4 cm were under-detected (Fig. 5), possibly because 
they were not well-scanned due to their small size and the 
20 × 20 m scanning strategy.
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By comparing the stem locations between TLS-derived 
and field inventoried stem maps, we found significant biases 
in the locations of ground-positioned trees. This suggests 
that geolocation in rainforest inventories could be error 
prone even though these inventories have been established 
decades ago and re-censused frequently. It is likely that 
structurally complex temperate forests have the same type 
of geolocation bias. The larger the plots are, or the larger 
their terrain variability, the more severe biases in tree posi-
tions could be. TLS mapping crucially helps reducing this 
bias. This has implications for checking and correcting (if 
any) the potential bias in tree positions in large forest plots 
currently in operation in global forests (Anderson-Teixeira 
et al., 2015).

4.4 � DBH estimation and uncertainty

We used two methods to estimate the diameter of trees. The 
first is the so-called “xy-range” approach, which automati-
cally estimated stem diameters once stems were detected. It 
used the stem points with a height above the ground < 4 m as 
input, thus over-estimates the DBH for stems with buttresses 
or stilt roots. It also under-estimates the DBH for insuffi-
ciently scanned stems. The uncertainty of this approach was 
around 6 cm (Fig. 8a). We explored other methods such as 
circle fitting techniques (Pueschel et al. 2013), but found no 
single best approach to estimate DBH accurately and auto-
matically for all trees with varying stem shapes and scan 
qualities. For small trees, the stem points can be too few 
to be circle-fitted. For partially scanned stems, it is better 
to visually verify whether a circle can be fitted to the stem 
points and whether the fitted circle is reasonable. For large, 
irregularly shaped stems with buttresses (such as the case of 
Swartzia polyphylla DC), neither our “xy-range” approach 
nor the commonly used circle fitting can accurately cap-
ture their realistic trunk shapes. The “xy-range” approach, 
although not perfect, remains the most efficient for automatic 
estimation of DBH.

To achieve better accuracy, we used a semi-automatic 
approach. We visually checked the shape and quality of the 
stem points to choose the most appropriate method for DBH 
estimation (Fig. 3b, 3c). The accuracy largely increased 
compared to the “xy-range” approach (Fig. 8b), but three 
very large stems still had errors of ~ 20 cm in their estimated 
DBHs (Fig. 8c). These included the largest tree in the plot, a 
Pseudopiptadenia suaveolens (Miq.) J.W.Grimes (Fabaceae, 
Mimosoideae), with large buttresses, and a Pradosia coch-
learia (Lecomte) T.D. Pennington (Sapotaceae), another 
famously buttressed tree species in French Guiana, known 
for its fruit-bearing stems. The third large tree was a Cou-
ratari guianensis (Aubl.), in the Brazil-nut family (Lecythi-
daceae), known in French Guiana as “mahot cigare” and in 
Brazil as “tauari,” which also generally has large buttresses. 

Because it was difficult to set up a ladder around the huge 
buttresses, their DBHs were estimated in the field using a 
camera. Thus, we presume that the mismatch between TLS 
estimates and field estimates might be due to an error in the 
latter. Indeed, we extracted the raw stem point cloud for all 
three stems and carefully explored what would be the most 
likely value of the stem trunk diameter: after this manual 
check, a large discrepancy persisted, pointing again to the 
issue in DBH measurements for the three trees. This shows 
the advantage of TLS in estimating the size of the largest 
trees in a plot (Momo Takoudjou et al. 2018).

In this study, we focused on DBH because it is a corner-
stone metric in forest inventories. However, as pointed out 
by Newnham et al. (2015), TLS provides a much richer 3D 
information than just a DBH. Volume calculation for tree 
stems could help infer their biomass (Fig. 14 in the Appen-
dix; Calders et al. 2015; Disney et al. 2018), but this might 
require TLS instruments with a longer range to reach tree 
tops. For an assessment of simpler forest structure metrics 
such as DBH, lightweight lower-cost scanners such as the 
BLK360 or the Canopy Biomass Lidar (CBL, Paynter et al. 
2016) provide a rapid and cost-effective solution and can 
easily be deployed in remote or inaccessible areas (Calders 
et al., 2020).

For the present analysis, we subsampled the point cloud 
prior to stem detection (Sect. 2.3). We found that this was 
not a major cause of the uncertainties in the DBH estimation 
(Fig. 15 in the Appendix). As discussed above, insufficient 
scanning (e.g., occlusion effects) influenced the accuracy 
of the estimated DBH to a much larger extent than subsam-
pling. Thus, DBH estimation could be largely improved 
with a finer-resolution scan grid (e.g., 10 × 10 m rather than 
20 × 20 m). However, there is a balance between point qual-
ity and scan efficiency with the BLK360 scanners. Setting up 
the targets in the field every 20 m was time consuming, and 
a 10-m grid would have multiplied the effort by a factor of 
four (Text 1 in the Appendix). Future handheld and backpack 
TLS systems might be able to achieve even higher scan qual-
ity while reducing working time, although currently few (if 
any) have been tested over large areas in tropical rainforests.

5 � Conclusion

Using a lightweight terrestrial laser scanning technology, 
combined with a newly developed stem mapping procedure, 
we scanned a 12-ha plot of rainforest, created a high-resolu-
tion DTM (20 × 20 cm), and mapped 36,422 stems from the 
acquired point cloud. These results will hopefully advance 
the use of TLS in stem mapping in tropical rainforests. The 
stem mapping procedure is poised to considerably facilitate 
the establishment of large forest plots in rainforests, provid-
ing accurate positions of a massive number of trees while 
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reducing workload. Our study focused on rainforests, but the 
stem mapping procedure presented here could also be use-
ful for temperate forests having a similarly complex forest 
structure. We used a BLK360 instrument, but lightweight 
terrestrial laser scanners are rapidly developing and purchas-
ing costs are decreasing (Newnham et al. 2015). Therefore, 
the proposed stem mapping procedure could soon become 
of standard use even in complex forest environments such as 
mature rainforests and temperate broadleaf forests. Process-
ing advances should further improve stem mapping. Finally, 
TLS-derived data could be useful for other applications, 
such as the calculation of coarse woody debris volume, stem 
volume, and trunk tapering (Cushman et al. 2021).
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