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Potential of using surface temperature data
to benchmark Sentinel-2-based forest
phenometrics in boreal Finland
Titta Majasalmi1* and Miina Rautiainen1,2

Abstract

Key message: We present a new approach to calibrate timings of phenological events from satellite data (e.g.,
Sentinel-2 MSI data) with readily available surface temperature data. The new approach improves the estimation of
growing season length in boreal forests.

Context: Satellite data is used to calibrate phenology models employed in land surface model components of
climate models. However, realistic quantification of forest phenological transitions, such as the greenup and
senescence, across large spatial scales remains challenging due to the lack of sufficient ground validation data
representative of both forest tree canopy and forest understory species compositions.

Aims: The aim of this study was to develop a new approach to benchmark boreal forest land surface phenology
obtained from Sentinel-2 (S2) against surface temperature data.

Methods: We computed S2 phenological transition dates and compared them to ground reference data on
temperature from a network of meteorological stations across Finland (60–70N°).

Results: Our results showed that applying standard phenometrics directly to S2 data to estimate the growing
season length in boreal forests may lead to clear biases in all species groups.

Conclusion: Our approach to use temperature data to calibrate boreal forest phenometrics allows flexible application
across spatial scales (i.e., point or grid) and different satellite sensors. It can be combined with any vegetation land
cover product to provide a link between surface temperature data and forest seasonal reflectance properties.

Keywords: Land surface phenology, LSP, Enhanced vegetation index, EVI, Temperature deviation integral, TDI

1 Introduction
Vegetation phenology, the science of reoccurring vegeta-
tion lifecycles, is one of the key drivers of regional and glo-
bal carbon and water cycles, and is identified as a critical
variable required for the characterization of Earth’ s cli-
mate, e.g., in the UN’s Global Climate Observing System
(GCOS, 2016). Plant phenology refers to specific growth

or senescence events of individual plants, whereas
satellite-based phenology, also called as land surface phen-
ology (LSP), denotes aggregated phenology of all plants
occupying an area viewed by a satellite sensor (Helman
2018; Berra and Gaulton 2021). LSP metrics (later in the
paper referred to as phenometrics) refer to the detection
of phenological events, such as the onset of greenness,
greenup midpoint, maturity, peak greenness, senescence,
greendown midpoint, and dormancy (Gray et al., 2019)
based on remotely sensed greenness proxies, such as Nor-
malized Difference vegetation Index (NDVI) or Enhanced
Vegetation Index (EVI). Currently, satellites remain the
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only feasible tool for continuous monitoring of LSP at re-
gional to global scales.
Land Surface Models (LSMs), terrestrial components

of climate models, often employ remotely sensed maps
of different Plant Functional Types (PFTs) to represent
vegetation spatial distributions, and LSP is often used to
derive models required for controlling vegetation phen-
ology (Botta et al. 2000; Fisher and Koven, 2020; Fu
et al. 2014; Piao et al. 2019). However, accurate quantifi-
cation of vegetation phenological transitions, such as the
greenup and the senescence, across large spatial scales
remains challenging due to the lack of good quality sat-
ellite data time series and sufficient ground validation
data representative of both forest tree canopy and forest
understory species compositions. Differences between
satellite and ground reference data are caused by, e.g.,
mismatches in temporal and spatial sampling, differ-
ences in terminology used to separate certain pheno-
logical transitions, the use of different view and
observation angles, and varying wavelength regions of
the bands of the sensors (Berra et al., 2019; Zeng et al.
2020). Although many budburst models have been de-
veloped for different species and research sites (e.g., Lap-
palainen et al. 2008; Linkosalo et al. 2006; Olsson and
Jönsson 2014), they often perform poorly outside the
geographical areas the models were developed for (Ols-
son and Jönsson 2014), and thus, they are not relevant
for large area applications. While the majority of the
published LSP studies have looked at temperate and
boreal deciduous forests (e.g., Berra and Gaulton 2021;
Hmimina et al. 2013), only a few studies have focused
on boreal evergreen coniferous forest phenology
(Helman 2018; Gill et al. 2015). In addition, only a few
models exist for mapping and modeling autumn senes-
cence, as the most studies have focused on greenup
(Peaucelle et al. 2019).
The representation of vegetation phenological pro-

cesses in LSMs have several shortcomings. For example,
Richardson et al. (2012) found that, for temperate and
boreal forests, almost all of the 14 vegetation models
with different phenology parameterizations that they
compared overestimated the length of the growing sea-
son and consequently the gross ecosystem photosyn-
thesis. Accounting for evergreen coniferous phenology
in LSMs may also significantly impact future projections
of the carbon budget (Peaucelle et al. 2019). A recent
paper by Piao et al. (2019) suggests that future studies
should focus on scaling timings of phenological events
and phenological phases from species to landscape-level.
Noteworthy is that LSMs often predict the timings of
greenup and senescence based on climatic derivatives,
such as the growing degree day (GDD) sums (e.g., Botta
et al. 2000; Fu et al. 2014; White et al. 1997; Richardson
et al. 2012; CLM5, 2020), rather than greenness proxies

obtained from satellite measured data. Although several
LSMs may use so-called “satellite-based phenology” or
“prescribed phenology,” these denote specifying for each
site (or PFT) a single average seasonal change of leaf
area index (LAI, m2/m2) based on satellite data (i.e.,
monthly mean LAI) (e.g., Levis and Bonan, 2004;
Richardson et al. 2012; Sellers et al. 1996). The problem
of the prescribed phenology approach is that using the
monthly LAI does not depend on prevailing environ-
mental conditions (Levis and Bonan, 2004; Richardson
et al. 2012). Thus, there is a need for improved linking
of temperature data and satellite-based greenness values.
Regional and vegetation type-specific linking is a pre-
requisite for realistic prediction of future vegetation pro-
cesses in LSMs.
The coarse spatial resolution of, e.g., Terra and Aqua

combined Moderate Resolution Imaging Spectroradi-
ometer (MODIS) and its products which are often tem-
poral maximum value composites do not allow
inspection of phenological differences between different
tree species (or forest types) in fragmented landscapes or
analyzing exact timings of the phenological transitions
dates. For example, as results from Hmimina et al.
(2013) demonstrated for evergreen forest areas, the 16-
day max composite MODIS NDVI time series did not
succeed in reproducing the general temporal pheno-
logical pattern, and significant discrepancies were ob-
served with ground-based reference data due to weather
conditions and spatial heterogeneity within the MODIS
pixels. In addition, it has been shown that the frequency
of high-quality satellite observations can have substantial
impact on phenological detections during periods of
phenological changes (White et al. 2014). Thus, there is
a need for using finer spatial resolution daily data to bet-
ter understand the seasonal changes in boreal forest re-
flectance of different forest types.
Obtaining landscape-level estimates of vegetation

phenology from optical satellite data contains typically
steps of cleaning and flagging the data, smoothing and
reconstruction, and extraction of phenometrics from the
reconstructed time series (e.g., Zeng et al. 2020). Al-
though there is a myriad of methods for accomplishing
the abovementioned tasks, different methods are known
to perform well for different vegetation types and areas
(e.g., de Beurs and Henebry, 2010; Zeng et al. 2020).
Thus, it is often recommended to compare multiple fit-
ting methods to evaluate the possible errors in predicted
phenological transition dates (Helman 2018). The sim-
plest and thus most often used approach to extract the
phenological transition dates from reconstructed
satellite-based time series data is to employ predefined
greenness thresholds, the so-called phenometrics (e.g.,
Bolton et al. 2020; MCD12Q2v006 2020). This approach
has been regionally used by the harmonized Landsat 8
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and Sentinel-2 (S2) phenology product dataset (Bolton
et al. 2020), which unfortunately currently only covers
the North American continent. The European counter-
part is currently being processed by COPERNICUS
(2020) and should become available during 2021. Glo-
bally, the threshold method has been employed by the
MODIS Land Cover Dynamics (MCD12Q2 v006) data
product (a.k.a. informally called MODIS Global Vegeta-
tion Phenology product). MCD12Q2 has notably coarser
spatial resolution (pixel size of 500 m) than S2 (10–60
m, respectively) (MCD12Q2v006 2020). In practice, the
threshold method is fast and easy to apply, but the
downside is that the biophysical meaning of the thresh-
old selected may not be clear, and any single threshold
value may not be assumed representative for different
species mixtures and different geographical regions (Tan
et al. 2010; White et al. 1997). Thus, for regional applica-
tion of the threshold method, the biome-specific thresh-
olds need to be benchmarked with ground data.
Challenges in optical remote sensing of boreal forests

are caused by frequent cloudiness (i.e., data quantity and
quality problems), low seasonal variation in evergreen
conifer canopy leaf area (i.e., thresholding problem), and
mixed signals from the ground floor vegetation and from
deciduous trees (i.e., mixed signal problem) (e.g., Hel-
man 2018). Due to these reasons, results regarding LSP
of evergreen coniferous forests remain less interpretable
and conclusive compared with results of ecosystems with
deciduous trees (e.g., Bolton et al., 2020). In addition,
even the user manual of MCD12Q2 (MCD12Q2v006,
2020) reports ongoing challenges in mapping LSP in the
boreal region: “Greenup and Dormancy phenometrics
are anomalously early/late in some high-latitude re-
gions…”. Thus, there is an urgent demand to develop
approaches for improving LSP mapping of evergreen co-
nifers from optical satellite data, because such remotely
sensed landcover/phenology products are used to cali-
brate phenology models incorporated into LSMs (Botta
et al. 2000; Fu et al. 2014). In addition, there is a need to
investigate possible biases that are introduced by using
different phenometrics to define the beginning and end
of the growing season. For example, currently the
MODIS Technical guide (MCD12Q2v006 2020) recom-
mends “…users are encouraged to use the more realistic
and stable MidGreenup and MidGreendown metrics to
capture season start/end in these regions (e.g., high-
latitude evergreen forests)”. Thus, it is not clear how
large biases in predicted surface fluxes may occur if
these two phenometric-pairs are used interchangeably to
define the growing season length (GSL). If clear biases
occur in GSL estimates, regional benchmarking of the
thresholds (i.e., phenometrics) is required to clarify the
relation between satellite-based greenness and surface
temperature data. While the majority of phenology

research has targeted quantifying the spring greenup,
notably fewer studies have focused on autumn senes-
cence which is also needed to determine the GSL.
Vegetation phenology in the boreal region is driven by

temperature and photoperiod (Gill et al. 2015; Olsson
and Jönsson 2014; Piao et al. 2019). Thermal growing
season (TGS) is defined to begin when the daily mean
temperature rises above a selected threshold in spring
and snow has melted from open areas, and in autumn, it
terminates when daily mean temperature falls perman-
ently below the same threshold (Ruosteenoja et al.
2016). The development of process-based phenology
models is hindered by the lack of a mechanistic under-
standing regarding effects of, e.g., photoperiod, chilling,
and dormancy on boreal forest phenology (Gill et al.
2015; Piao et al. 2019). Thus, at present, using
temperature derived estimates of TGS remains the most
feasible option for developing large area phenology
models for areas dominated by boreal PFTs (e.g., Botta
et al. 2000). The beginning and end dates of TGS are
often approximated to occur, after the first 5-day period
with average temperatures above a base temperature and
after the first 5-day period with temperature below the
same base temperature (Ruosteenoja et al. 2016). Typic-
ally, a base temperature threshold of 5°C is applied in
boreal and temperate climate conditions (e.g., Kauppi
et al. 2014; Skaugen and Tveito 2004) whereas in
warmer climates higher thresholds, e.g., 10 °C, are used
(Matzarakis et al. 2007). Meaningful links between
landscape-level LSP greenness and temperature data is
required by the LSMs which use gridded temperature
data to predict vegetation responses to alternative future
temperatures.
The goal of this study was to develop a new ap-

proach to benchmark satellite-based phenometrics
against surface temperature data. Using the new ap-
proach, we computed phenological transition dates
from S2 data and compared them to ground reference
estimates based on temperature data from a network
of meteorological stations across boreal Finland. Fi-
nally, using the new approach, we answer the follow-
ing research question: How do estimates of growing
season length (GSL) vary when obtained from S2 data
or ground reference temperature data?

2 Material and methods
2.1 Data
We obtained daily mean temperature (°C) data from the
Finnish Meteorological Institute’s (FMI) weather station
network for 201 sites from the 1st of January 2017 to
the 31st of December 2019. Both Sentinels 2A and 2B
were operating during the growing seasons in 2017,
2018, and 2019. The data covers the whole of Finland.
The data was ordered from FMI via Ilmastopalvelu web
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service (FMI 2020). In this study, we wanted to focus on
pure forest pixels, and thus, in the case the meteoro-
logical station was not directly located in a forest, we
made the assumption that the meteorological data repre-
sents sufficiently well also the forest pixels located in the
closest forest from where the forest plot was selected.
The forest plot locations were determined based on vis-
ual assessment of Google Earth Engine (Gorelick et al.
2017) map preview. Typically, the forest plot (used in
our analyses) was ~270 m from the meteorological sta-
tion. For each forest plot, a time-series of S2 data, corre-
sponding to the daily temperature data period, was
extracted from dataset “COPERNICUS/S2_SR” using
Google Earth Engine. The COPERNICUS/S2_SR is a
level-2A orthorectified atmospherically corrected surface
reflectance product (SR) from the European Space
Agency’s Copernicus program. S2 satellites have a global
5-day revisit frequency, and the S2 Multispectral Instru-
ment (MSI) samples 13 spectral bands: at either 10-, 20-,
or 60-m spatial resolution. The level-2A S2_SR data is
only available for data periods when both S2 and 2B sat-
ellites were on the same orbit (S2_SR data available after
March 28, 2017).
Finnish CORINE (2018a) landcover classification was

used to extract the forest type information (i.e., whether
the forest was conifer, broadleaved, or mixed forest) for
the forest plot locations. The CORINE data has 20-m
spatial resolution and is based on S2 satellite image mo-
saic compiled from 10×10 m spatial resolution data. The
CORINE image mosaic interpretation employed the Na-
tional Forest Inventory data (from Natural Resources In-
stitute Finland), Biotope data (from Metsähallitus, a
national organization managing state-owned land and
water areas), and Digital Elevation Model and Soil Infor-
mation from the Topographic Database (CORINE
2018b). Based on independent land use validation data-
set, the percentage of correctly classified pixels in the
CORINE is 95% for broadleaved forest, 98% for conifer-
ous forest, and 97% for mixed forest (see Table 2 in
CORINE 2018b). The number of plots used in our ana-
lyses was 103 from which 74 were dominated by conifer-
ous, 14 by deciduous, and 15 by mixed species (Fig. 1,
more details in section 2.3.1).

2.2 Processing of temperature data
The ground reference dates for the beginning and
ending of the thermal growing season (TGSstart and
TGSend, respectively) were calculated using the
temperature deviation integral (TDI) method which
has been in use in the operational climate service at
the Finnish Meteorological Institute (FMI) since 2007
(Ruosteenoja et al. 2016) and thus is sufficient to pro-
vide a regional baseline to compare the satellite-based
phenometrics with.

The TDI method is based on summing daily mean
temperatures above the base temperature of 5°C start-
ing from 1st of February. If temperature is above the
base temperature on that day, then the first day when
temperature falls below the base temperature is used.
The 1st of June is used to constrain the search period
to find the absolute minimum and maximum values
(for all details see Ruosteenoja et al. 2016). In other
words, in this study, TGSstart was determined to hap-
pen on the day the integral reaches the absolute
minimum value not later than the 1st of June. TGSend
was determined to happen on the day when the inte-
gral reaches the absolute maximum value starting in-
tegration on the 1st of June.
Following the TDI approach by Ruosteenoja et al.

(2016), the Growing Degree Day (GDD, °C) sum, a
measure of heat accumulation, was calculated for the
time period between TGSstart and TGSend, by taking the
total sum of daily mean temperatures above the base
temperature. In addition, the period when daily mean
temperatures were above-zero were searched using a
base temperature of 0°C (referred to as “T>0” for spring
and “T<0” for autumn) to indicate the potential photo-
synthesis period of evergreen conifers. All years (i.e.,
2017, 2018 and 2019) had 365 days. An example of ap-
plying the TDI method for finding timings of TGSstart,
TGSend, T>0, and T<0 is illustrated in Fig. 2.

2.3 Processing of Sentinel-2 (S2) data
2.3.1 Plot selection
Time-series of S2 surface reflectance (SR) data was ex-
tracted using a buffer of 30-m around plot center points.
The 30-m buffer size was used as a compromise reso-
lution between 10 and 60 m bands. In addition, pixel
classification labels and quality flags were obtained.
The number of FMI’s meteorological stations suitable

for this study was limited due to the following reasons:
First, we excluded FMI sites for which the TGSstart and
TGSend could not be determined (n=23), and sites lo-
cated on treeless islets and locations for which no S2
data was available (n=9). Next, we removed plots which
were not classified as forest by the CORINE (n=9), and
plots which did not fall within 500-m from the FMI site
center points (n=53). Finally, we excluded plots for
which few good quality S2 observations (<10 during the
3-year period) were available (n=4). Thus, the number of
plots retained in analyses was 103.
CORINE (2018a) was used to extract dominant for-

est type information and to reclassify the data into
three phenological groups of coniferous, deciduous,
and mixed species so that 1 = coniferous (i.e., COR-
INE class labels: 25, 26, and 27 denoting coniferous
forest on mineral or on rocky soil or on peatland), 2
= deciduous (i.e., CORINE class label 23 meaning
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“Broad-leaved forest on mineral soil”), and 3 = mixed
(i.e., CORINE class labels: 28, 29, 30, 34, and 36 re-
ferring to mixed forest on mineral or on rocky soil or
on peatland, or transitional woodland/shrub with a
canopy cover of 10–30% on mineral or on rocky soil).
The number of plots classified as coniferous was 74,
deciduous was 14 and mixed was 15 (Fig. 1).

2.3.2 Preprocessing S2 data
The S2 data was provided in atmospherically cor-
rected format, but no Nadir BRDF-Adjusted Reflect-
ance (NBAR) corrected S2 products were available at
the time of this study. We removed duplicated obser-
vations of S2 overpasses (i.e., data from S2A was pre-
ferred over S2B), and selected pixels which were

classified as good quality (later referred to as “GQ”;
S2 QA60 flag had value 0).
Next, we compared two approaches to filter the S2

data, because this has direct effect on the number of
S2 observations available data for the analyses. In the
first approach, we selected observations which were
identified as “vegetation” by the S2 Scene Classifica-
tion Label (SCL, i.e., SCL value was four). This data-
set will be later referred to as “GQ+SCL4”. In the
second approach, we used three Vegetation Indices
(VIs) to filter out anomalous data. Data obtained fol-
lowing this workflow will be later called as “GQ+VIs”.
The three VIs were EVI, Normalized Difference Snow
Index (NDSI), and Senescence Index (SI) defined as
follows:

Fig. 1 Spatial distribution of Finnish Meteorological Institute (FMI) weather station sites (n=103) used in this study. Dominant forest type information is
provided for the forest plots. Abbreviations: Conif.=Coniferous forest, Decid.=Deciduous forest, and Mixed= Conif. + Decid.
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EVI ¼ 2:5
� B8A−B4ð Þ= B8Aþ 6� B4−7:5� B2ð Þ þ 1ð Þ

ð1Þ

NDSI ¼ B3−B11ð Þ= B3þ B11ð Þ ð2Þ

SI ¼ B8=B3 ð3Þ

where B2 (490 nm, 10 m), B3 (560 nm, 10 m), B4 (665
nm, 10 m), B8A (865 nm, 20 m), B8 (842 nm, 10 m),
and B11 (1610 nm, 20 m) are S2 band SR values (band
center wavelength and their spatial resolution are given
inside parenthesis, respectively).
To exclude abnormal data, EVI thresholds were set to

0.01 and 1 as we knew our plots contained vegetation.
The NDSI thresholds were set to -0.1 and -1 as pixels
with negative NDSI values are considered as cloud-free
and snow-free (Sentinel-2 Technical guide 2020). For SI,
the thresholds were 0.4 and 10, because SI values higher
than 0.4 are considered as cloud-free vegetated pixels
(Sentinel-2 Technical guide 2020).

2.3.3 Generation of daily time series of EVI
Monitoring and mapping LSP from satellite platforms
relies on greenness proxies such as EVI. However, as
good quality satellite data is not obtained at every satel-
lite overpass (i.e., due to clouds, cloud shadows), there is
need to fill-in the gaps in the data to construct a daily

time-series that can be used to extract the phenological
transition dates.
Plots which had a minimum of ten GQ-VIs observa-

tions during the three years period (2017–2019) were
used in our analyses (i.e., 103 plots). Due to the sparsity
of the annual S2 observations, a time-series of 3-year
mean daily EVI was created to remove outlier observa-
tions from the annual EVI values in the following way.
First, a time-series of daily 3-year mean EVI was pre-
dicted for each plot: This was accomplished by fitting a
LOESS Local Regression with a span of 0.5 (i.e., param-
eter controlling the degree of smoothing, ranges between
0 and 1) to all good quality EVI observations from the
years 2017–2019. Then, we excluded EVI values that fell
outside two standard deviations (i.e., confidence limit of
95 %) from the mean EVI and refit the LOESS to predict
the 3-year mean EVI. Finally, time-series of daily EVI
values were obtained by using splines to interpolate (and
extrapolate) over DOYs without EVI values. Noteworthy
is that the daily time-series of the 3-year mean EVI was
only used for outlier analysis (section 2.3.4), all results
are based on annual EVI time-series.
Gap filling of the data was necessary as our study area

was located between latitudes 60 and 70°N, where data
gaps in optical satellite data availability cannot be
avoided (i.e., data availability is limited by low Sun an-
gles and polar night). The boreal zone has also typically
one growth-cycle peaking around the mid-summer,

Fig. 2 An example application of the temperature deviation integral (TDI) method for finding timings of start and end of the thermal growing
season (TGSstart, TGSend), and the timings of daily mean temperature (Tday) rising above-zero “T>0” and falling below-zero “T<0”. Tbase and T0
indicate the 5°C and the 0°C base temperatures, respectively. Tday-Tbase is plotted as cumulative temperature
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which simplifies the approach. Given that our study area
is mostly dominated by evergreen conifers (i.e., there is
little seasonal changes in tree canopy leaf area), the ever-
green conifer forest tree canopy may be assumed to re-
main green over the winter. However, reflectance
properties of deciduous forest understory and tree can-
opy may vary between different seasons (Rautiainen
et al. 2011).
Taking all these aspects into consideration allows the

creation of simple rules to fill in the gaps in the daily
EVI values: The max EVI was searched between the 15th

of May and the 31st of August, and the peak EVI date
was used to split the data into spring and autumn seg-
ments. For both segments, sub-zero EVI values were re-
placed with NA, and minimum EVI values and their
DOYs were searched. Minimum spring (autumn) EVI
was used to replace all EVI values occurring before
(after) the occurrence of the minimum EVI.

2.3.4 Outlier detection of annual daily time-series of EVI
Due to the scarcity and often poor quality of S2 observa-
tions, we developed an objective measure to separate in-
valid and valid annual EVI time-series from each other.
The time-series of annual daily EVI data was assumed
valid if the relative shape value of the annual daily EVI
curve (denoted as “x”) differed less than 30% from the
relative shape value of the 3-year mean daily EVI-curve
(denoted as X; i.e., abs(x) - abs(X) < 0.3). The relative
shape values (x and X, respectively) of the EVI time-
series curves were obtained by taking the difference

between two consecutive daily EVI values (i.e., t2–t1 =
d), and summing above- and below-zero values of d sep-
arately (“a”= sum(d > 0) and “b”= sum(d < 0)), and tak-
ing their ratio (x= a/b, and same for X, respectively).
The 30% threshold was arbitrary but sufficed to separ-

ate years for which interpolation (or extrapolation)
clearly failed due to the sparsity of S2 data (i.e., years
with 5 or more S2 observations were used to fit annual
LOESS). Clearly, increasing the number of annual S2 ob-
servations would decrease the need for checks, but
would also focus the analyses on regions with more
cloudless days and a longer data acquisition period (i.e.,
it would introduce spatial bias). In addition, if the annual
predicted plot-level EVI for the DOY corresponding
TGSstart or TGSend was larger or equal to 0.8 or smaller
or equal to 0.1, then the time-series of annual daily EVI
data was assumed invalid. Thresholds of 0.8 and 0.1 EVI
were arbitrarily chosen but sufficed to detect possible
interpolation (or extrapolation) errors. The number of
plots with valid daily time-series of EVI was 83 for con-
iferous, 26 for deciduous, and 15 for mixed species
groups. To demonstrate the effect of preprocessing on
S2 data availability, data from both approaches (i.e.,
GQ+SCL and GQ+VIs) were used to extract the DOYs
for first, peak, and last S2 observations and their respect-
ive EVI values.

2.3.5 Identifying phenophase transition dates from S2
Phenometrics were used to identify phenophase transi-
tion dates from the daily EVI time-series. These

Fig. 3 Schematic of so-called standard phenometrics that are used to extract phenological transition dates from the Sentinel-2 data. Abbreviations:
EVI= Enhanced Vegetation Index, DOY= day of year. The names and percentiles are similar to those used by MODIS Vegetation Phenology product
(i.e., MCD12Q2 v006) and the phenology product by Bolton et al. (2020)
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transition dates were searched annually as our study area
has one valid growth cycle per year. Start of the greenup,
greenup midpoint, and maturity dates were obtained
from the EVI data when the EVI time-series crossed
15%, 50%, and 90% of the spring segment EVI amplitude
(Fig. 3). Correspondingly, start of the senescence, green-
down midpoint, and dormancy were identified as the
DOYs when EVI time-series crossed 90%, 50%, and 15%
of the autumn segment EVI amplitude. These pheno-
metrics were selected as they are well known (i.e., stand-
ard) and used by, e.g., MODIS Vegetation Phenology
product (i.e., MCD12Q2 v006) (Gray et al., 2019) and
the phenology product by Bolton et al. (2020).
First, the max EVI peak was searched between May

15th and 31 of August, and then that date was used to
split the year into two (i.e., spring and autumn) segments
and minimum EVI values were searched separately for
both segments (i.e., seasonal EVI amplitude was thus
allowed to vary between spring and autumn). Finally,
phenological transition dates were extracted from the
time-series of daily EVI data using phenometrics.

2.3.6 Comparison of S2 and temperature-based transition
dates
The S2-based phenological transition dates, obtained
using standard phenometrics, were compared with pheno-
metrics that were extracted from the S2 data correspond-
ing to the daily mean temperature-based estimates of
TGSstart and TGSend. In other words, for each plot, we ob-
tained the phenometric that would correspond to the tim-
ing of TGSstart and TGSend. Selection of phenometrics to
identify phenological transition dates has direct impact on
growing season length (GSL), and thus, we also inspected
temporal divergence of GSL estimates obtained using dif-
ferent phenometrics and temperature data.

3 Results
3.1 Effect of preprocessing on S2 data availability
Results showed that using the GQ+VIs approach extends
the time period for which good quality data is available
for vegetated pixels compared to the GQ+SCL4 ap-
proach that relied on the S2 pixel classification labels

Fig. 4 Preprocessed Sentinel-2 (S2) data. “GQ+SCL4” denotes observations labeled as good quality (GQ) and vegetated (i.e., S2 Scene
Classification Label (SCL) = four), and “GQ+VIs” observations labeled as good quality (GQ) and using Vegetation Indices (VIs) to exclude non-
vegetated or anomalous observations. Boxplots’ lower and upper hinges correspond to the first and third quartiles, median is shown as the
horizontal line, mean is marked using the star, and dots are the outlier points.
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(Figs. 4 and 5). Using the GQ+SCL4 approach, data is
available on average starting from DOYs 120, 131, and
115 for coniferous, deciduous, and mixed species groups,
respectively. Whereas using the GQ+VIs approach, data
are available clearly earlier - on average onwards from
DOYs 77, 86, and 84. Respectively, using the GQ+SCL4
approach, the last observations for the plots were re-
corded on DOYs 271, 275, and 280 for coniferous, de-
ciduous, and mixed species groups. Whereas using the
GQ+VIs approach, the last observations were recorded
clearly later (i.e., on average at DOYs 301, 318, and 312
for coniferous, deciduous, and mixed species groups).
Given that the TGSstart may occur around DOY 100 and
TGSend around DOY 320, using the GQ+VIs approach

appears better than GQ+SCL4 for characterization of
boreal forest phenology due to the longer time span S2
data is available. Thus, all following analyses were done
using the GQ+VIs method.

3.2 Identification of phenophase transition dates
Results showed that there was more variation in EVI
phenometrics during autumn than in spring, and the
EVI boxplots appeared fairly symmetric for all species
groups (Fig. 6). The overall trend was that the height of
the boxplot describing the variation in EVI phenometrics
increased towards the winter, and the smallest variation
in EVI phenometrics was observed around the peak. In
coniferous plots, the seasonal variation in peak EVI value

Fig. 5 Time series plots demonstrating the effect of preprocessing on Sentinel-2 (S2) data availability in a–c coniferous, d–f deciduous, and h–j
mixed forests. “GQ+SCL4” denotes observations labeled as good quality (GQ) and vegetated (i.e., S2 Scene Classification Label (SCL) = four), and
“GQ+VIs” observations labeled as good quality (GQ) and using Vegetation Indices (VIs) to exclude non-vegetated or anomalous observations
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rarely exceeded 0.5 EVI value, whereas in plots domi-
nated by deciduous or mixed species the peak EVI did
reach up to 0.7. In coniferous plots, the minimum EVI
remained on average higher than in deciduous and
mixed plots. In deciduous and mixed plots, the EVI
values of the last phenometrics (i.e., the dormancy and
the minimum EVI) were on average smaller than re-
spective spring phenometrics (i.e., the minimum EVI
and the greenup).

3.3 Comparison of S2 and temperature-based estimates
There were clear differences between years in both S2
and temperature data (Fig. 7). The temporal pattern was
that for years with the highest annual max EVI values
the respective GDD sums were the smallest. For ex-
ample, the year 2017 had the highest max annual EVI
values and the smallest GDD sums for coniferous and
deciduous species plots. Year 2018 was the warmest for
coniferous and deciduous plots and had the smallest

Fig. 6 Variation in Enhanced Vegetation Index (EVI) values for the identified phenophase transitions for a Spring and b Autumn. Figure prepared
from annual EVI time-series data. Boxplots’ lower and upper hinges correspond to the first and third quartiles, median is shown as the horizontal
line, mean is marked using the star, and dots are the outlier points

Fig. 7 Annual variations in a peak EVIs and b Growing Degree Day (GDD) sums for the plots. Figure was prepared from annual EVI time-series
data, and as no valid annual EVI time-series were available for mixed forest plots for the year 2017 the respective GDD sum was excluded.
Boxplots’ lower and upper hinges correspond to the first and third quartiles, median is shown as the horizontal line, mean is marked using the
star, and dots are the outlier points
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annual maximum EVI values, but for mixed species plots
the smallest maximum EVI values and the highest GDD
sums were observed for 2019.
Results showed that during spring, the timing of the

TGSstart corresponded to the greenup fairly well for all
species groups (Fig. 8). TGSstart took place on average
between DOYs 114 and 120 in different species groups,
but the greenup started on average 1–2 weeks earlier
(between DOYs 109 and 116). The midgreenup, on the
other hand, took place on average 2–3 weeks later than
the respective TGSstart. The above-zero temperatures
began on average a month earlier than TGSstart, corre-
sponding to the timing of the minimum EVI. During
spring, the largest Root Mean Square Error (RMSE) be-
tween timings of the greenup and the TGSstart was ob-
served for coniferous forests (Table 1).
In autumn, all phenometrics had considerably more

variation than in spring, and the timing of the TGSend
occurred often between the midgreendown and the dor-
mancy. TGSend took place on average between DOYs
276–292, and the midgreendown on average ~2–4 weeks
earlier. The dormancy started 2–3 weeks after TGSend.

Thus, while the timing of the TGSstart on average corre-
sponded well with the greenup phenometric, neither the
midgreendown nor the dormancy appeared to corres-
pond with the timing of the TGSend. In autumn, the lar-
gest RMSE between the senescence and the TGSend was
noted for deciduous forests (Table 1). The above-zero
temperatures ended on average 6–7 weeks later than
TGSend and approximately corresponded to the timing
of the minimum EVI. During spring, there was little lati-
tudinal connection between timings of the greenup and
the TGSstart, but in autumn, a strong latitudinal trend
was observed between timings of the senescence and the
TGSend (Fig. 9).
Forests with deciduous broadleaved trees showed simi-

lar changes in EVI during spring while forests with con-
iferous species appeared more similar with each other
during autumn. Based on valid annual time-series of S2
EVI data, the timing of TGSstart corresponded on aver-
age to EVI phenometric (i.e., relative threshold) of 28%
(standard deviation: 27%) for coniferous, 15% (standard
deviation: 15%) for deciduous, and 17% (standard devi-
ation: 18%) for mixed species plots. Thus, while the 15%

Fig. 8 Comparison of remotely sensed phenometrics with temperature-based estimates of the start and end of the thermal growing season
(TGS). a Spring and b Autumn. Time period of temperature above-zero is indicated by “T>0” and “T<0”. Boxplots’ lower and upper hinges
correspond to the first and third quartiles, median is shown as the horizontal line, mean is marked using the star, and dots are the outlier points

Table 1 Statistics between timings of satellite-based greenup and senescence and temperature-based estimates of start and end of
the thermal growing season (TGSstart and TGSend, respectively). “Spring” values are calculated using timings of the greenup and the
TGSstart, and “Autumn” values using timings of the senescence and the TGSend. Abbreviations: N is the number of plots with valid
annual data, RMSE root mean square error (days), and R2 correlation coefficient

N RMSE(Spring) Bias(Spring) R2(Spring) RMSE(Autumn) Bias(Autumn) R2(Autumn)

Coniferous 83 40.6 10.6 0.18 85.78 81.94 −0.12

Deciduous 26 31.52 5.73 0.12 108.79 103.27 −0.36

Mixed 15 18.35 −1.93 0.04 91.89 89.13 −0.35

Majasalmi and Rautiainen Annals of Forest Science            (2022) 79:6 Page 11 of 17



EVI amplitude for the greenup corresponds with the
TGSstart of deciduous species (incl. mixed species), for
areas with evergreen conifers higher EVI amplitude per-
centile should be used to identify the TGSstart due to a
smaller EVI amplitude of coniferous species compared
to that of deciduous species (Fig. 6). During autumn, the
EVI amplitudes which corresponded to the timing of the
TGSend were 45% (standard deviation: 44%) for conifer-
ous, 33% (standard deviation: 20%) for deciduous, and
45% (standard deviation: 27%) for mixed species plots.

3.4 Comparison of growing season length estimates
In boreal forests, using the phenometrics for greenup-
dormancy may be expected to result in a nearly month-
long overestimation of the GSL, while using the
midgreenup-midgreendown phenometrics may be ex-
pected to underestimate the GSL by nearly a month.
Based on our results, applying the standard pheno-
metrics directly to S2 data to estimate the GSL may lead
to clear biases in all species groups (Fig. 10). The average
GSL using the greenup-dormancy phenometrics is 189
days. Using the midgreenup-midgreendown pheno-
metrics leads to an average GSL of 134 days. Both of
these estimates are fairly far off from that estimated
using ground reference temperature data (i.e., GSL of
161 days). The period of above-zero temperatures is
shown to illustrate the potential period evergreen coni-
fers are able to use for photosynthesis (i.e., soil not

frozen), indicating that using the midgreenup-
midgreendown phenometrics to constrain the GSL, as is
currently suggested by the MODIS phenology product,
leads to severe underestimation of GSL.

4 Discussion
Vegetation phenology has a central role in the function-
ing of the earth system as it acts as a driver of the en-
ergy, water, and carbon exchanges between the land
surface and the atmosphere. In this paper, we introduced
a benchmarking scheme for satellite-based phenometrics
(i.e., relative greenness amplitudes) with daily mean
temperature data to improve mapping of phenological
transition dates at a regional scale. As phenology models
used in LSMs are often based on optical satellite data,
and as LSMs operate based on predicted future
temperature data, regional linking between pheno-
metrics and temperature data may help in developing
more accurate phenology models for LSMs.
In the boreal region, vegetation phenology is con-

trolled by temperature (and photoperiod which does not
vary inter-annually) (Gill et al. 2015; Olsson and Jönsson
2014; Piao et al. 2019), and thus temperature-derived es-
timates of the TGS could be used to benchmark the re-
motely sensed phenometrics. Although TGS quantifies a
theoretical growing period, not an actual growth period
(Linderholm et al. 2008), the data is available at high fre-
quency and allows retrieving sensible dates for different

Fig. 9 Error in prediction of the greenup and the senescence between ground-based temperatures and satellite data as a function of latitude
separately for the three forest types
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phenological stages. The TDI method was used in this
study to obtain ground reference dates for the TGSstart
and TGSend, because it accounts for the impacts of sud-
den cold and warm spells indicating the time period
when vegetation growth conditions are favorable. Often
TGSstart has been defined by requiring the base
temperature to be exceeded on five (or more) consecu-
tive days during spring (TGSend being derived analo-
gously), but that may lead to inappropriate estimates if
early spring is followed by an intense cold period (see
example in Ruosteenoja et al. 2016). However, if the
winter is too mild to unambiguously terminate the previ-
ous TGS before the start of the next season, then TDI
cannot be used to determine TGS. Future studies should
investigate if photoperiod thresholds would be needed to
constrain the growth period during warm winters, but at
present, such regional thresholds are not available. Earl-
ier, the TDI approach has been used to investigate how
future rising temperatures are reflected in the GSL and
TGS in Europe (Ruosteenoja et al. 2016), and in this
paper, this was used to benchmark phenometrics in a
boreal forest based on S2 data. Noteworthy is that differ-
ent baseline temperatures may be needed in different

geographical regions with different vegetation types.
Also, the uncertainties of the benchmarking approach
should be evaluated at a regional level using near-
surface data (e.g., networks of phenocameras, flux-
towers, or observation stations).
Development of photosynthetic capacity of deciduous

tree species in spring is linked to the easily observable
growth of leaves, but for conifers, changes in the photo-
synthetic capacity are not readily detectable from the
satellite sensor data (Suni et al. 2003; Yang et al. 2020).
In conifer and mixed forests, the TGSend corresponded
to an average EVI amplitude of 45%, which may be ex-
pected to reflect the senescence of deciduous vegetation
(i.e., tree canopy and understory) rather than the phen-
ology of evergreen conifers, which are able to continue
photosynthesis until the soil freezes. The ending of the
above-zero temperatures approximately corresponds to
the timing of reaching autumn EVI minimum (Fig. 8),
and thus possibly a very small EVI percentile (or photo-
period threshold) value could be used to approximate
the ending of the conifer photosynthesis (i.e., conifer
dormancy). Overall, the naming of the remotely sensed
phenometrics using temperature-based terminology is

Fig. 10 Comparison of growing season length (GSL) estimated using satellite-based phenometrics and temperature-based data. Figure prepared
using annual EVI time-series data. Time period of temperature above-zero is indicated by “T>0”. Boxplots’ lower and upper hinges correspond to
the first and third quartiles, median is shown as the horizontal line, mean is marked using the star, and dots are the outlier points
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ambiguous. To provide more descriptive names for the
autumn phenometrics of boreal forests, perhaps the phe-
nometric corresponding to the timing of TGSend could
be called “senescence” and the phenometric correspond-
ing to the timing of below zero temperatures called
“dormancy.”
Some approaches exist for mapping evergreen conifer

phenology and photosynthesis from optical satellite data
(i.e., MODIS), but they are not directly applicable for
higher resolution S2 data. For example, it is not yet known
how the plant phenology index (PPI) proposed by Jin and
Eklundh (2014) can be calculated based on S2 data as it
was developed for the MODIS NBAR MCD43A4 dataset,
and currently, S2 does not provide an NBAR product.
However, the soon available (launch expected in 2021)
COPERNICUS (2020) phenology products suite will con-
tain PPI. Gamon et al. (2016) have suggested a chloro-
phyll/carotenoid index (CCI), which is expected to be
sensitive to seasonally changing chlorophyll/carotenoid
pigment ratios and thus able to track photosynthetic
phenology in evergreen conifers. However, this index can-
not be used for S2 data as one of the bands required by
the ratio index (i.e., wavelength region of 526–536 nm)
does not overlap with any of the S2 bands.
The optical satellite data may only observe changes in

surface properties such as LAI, while the boreal forest
vegetation phenology depends on surface temperature.
Temperature data-based theoretical benchmarking has
several advantages, over e.g., traditional phenological
field observations, because daily temperature data is
freely available from a myriad of stations that are scat-
tered across the globe. The approach allows flexible ap-
plication across spatial scales (i.e., point or grid) and
different satellite sensors, and may be combined with
any land cover mapping, and provides systematic linking
between biome surface temperature data and its seasonal
reflectance properties. Evergreen conifer forests have
low annual variation in LAI and chlorophyll content but
given that boreal evergreen conifer forests often have de-
ciduous understory vegetation and minor deciduous
mixed tree species, conifer forest LSP may be assumed
detectable (Pisek et al. 2012) from S2 data (i.e., assuming
that the understory responds to temperature induced
changes exactly as the overstory despite being composed
of different species and subject to different light levels).
As in boreal conditions, the period of favorable growth
conditions is constrained by the seasonal course of tem-
peratures—that could be used to regionally benchmark
annual greenness thresholds (i.e., greenness amplitude)
that are used to indicate vegetation transition dates. Al-
though the TDI method may not be as accurate as, e.g.,
data from flux towers to capture the start and end of the
growing seasons, the TDI still provides a systematic
means for theoretically analyzing growth stages of

evergreen conifers. As evergreen conifer and deciduous
broadleaf forests have clear differences in their seasonal
greenness amplitudes, using the same relative thresholds
(phenometrics) may be expected to lead to biased esti-
mates of GLS for conifers.
Recently, high spatial resolution Harmonized Landsat/

Sentinel-2 (HLS) LSP products have started to become
available in phenological research (Bolton et al. 2020;
Jönsson et al. 2018). Noteworthy is, that although the
provisional global HLS data product (i.e., HLSS30 v015)
has been available since summer 2020 from the Land
Processes Distributed Active Archive Center (LP DAAC,
2020), the scientific quality of the product has not been
yet validated, and thus, LP DAAC’s current recommen-
dation is to avoid using the HLS product for scientific
research or applications (LP DAAC, 2020). Although in-
cluding Landsat data might increase the good quality
data density, the technical differences in band spectral
and radiometric properties might result in systematic
level-differences between the two data sets, and thus,
this remains an interesting option for future studies.
Our goal was to develop a simplified approach for re-

gional benchmarking of satellite-based phenometrics
with surface temperature data which would not require
high computational power. Compared to the approach
by Bolton et al. (2020), the northern location of our
study area allowed us to employ a few simplifying rules.
For example, instead of using 6-month buffers around
each seasonal cycle as in Bolton et al. (2020), we had a
naturally occurring gap in S2 data in the middle of the
winter due to low sun angles. This also allowed us to
look for the peak growing season to occur around June
instead of screening for several annual peaks as was the
case for Bolton et al. (2020). Previously, Jönsson et al.
(2018) introduced a method for estimating LSP of ever-
green conifers based on fused S2 and Landsat data.
However, the method was tested in southern Sweden
(i.e., 60°N), but not in higher latitudes with more chal-
lenging seasonal conditions. In addition, their approach
requires long time series which is currently not yet avail-
able for S2.
Relying on satellite-based LSP estimates is based on

the following assumptions (Helman 2018): (1) an LSP
metric or VI is sensitive to changes in seasonal surface
properties such as LAI and chlorophyll content (Huete
2012), (2) an LSP metric or VI is robust against atmos-
pheric effects, (3) greenness dynamics are independent
of both changes in surface brightness and wetness, and
(4) land cover values stay constant. While it remains im-
possible to make sure all these assumptions are met in
practice, suitable preprocessing may be used (and is ne-
cessary) to exclude anomalous observations. Yet, the
benefit of optical remote sensing in LSP monitoring is
that it provides holistic information regarding the
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ecosystem state (i.e., not limited to a single species, site,
or growth stage). It also accounts for the phenology of
forest floor understory species, which have large effect
on forest reflectance especially in sparse (open canopy)
forests (Rautiainen and Lukeš, 2015; Pisek et al. 2012).
In boreal Finland, spectral phenology of the understory
layer and the tree layer may develop at the same speed
(Rautiainen et al. 2011), and thus, methods that focus on
characterizing the seasonal amplitude of EVI can be
used. However, if the seasonal course of forest under-
story reflectance differs much from that of the tree can-
opy, then applicability of amplitude-based methods
remains unclear.
Although remote sensing data have been used in de-

veloping phenology models for different vegetation types
used by the LSMs (Botta et al. 2000; Fu et al. 2014), for
boreal evergreen conifers such approaches are rarely ap-
plied due to challenges in obtaining sufficiently good
quality data. Phenology description of LSMs is currently
based on empirical or ad hoc approaches (Dahlin et al.
2015; Taylor and White 2020). Empirically based ap-
proaches that are based on temperature data remain the
preferred option to simulate phenological processes (Fu
et al. 2014; Ruosteenoja et al. 2016), because the current
understanding of mechanisms controlling budburst and
dormancy are insufficient for mechanistic simulation of
these processes in LSMs (Gill et al. 2015; Linkosalo et al.
2006; Piao et al. 2019). At present, only LSM ORCHI-
DEE contains an explicit parameterization of evergreen
conifer budburst and senescence (Peaucelle et al. 2019),
but as the approach is based on litterfall observations
(i.e., data that is scarcely available for spatially limited
plots only), it does not suffice for large area phenological
mapping.
Simplified and alternating approaches for better

representing the regional phenology are needed to
allow development of modular approaches with differ-
ent complexities for LSMs (Fisher and Koven 2020).
Currently, one of the biggest problems in LSM devel-
opment is the ever-increasing model intricacy which
calls for process complexity management while allow-
ing representation of land surface heterogeneity and
understanding parameter dynamics (Fisher and Koven
2020). The approach presented in this paper can be
applied for different satellite sensor systems, spatial
resolutions, and different land cover classifications
and with different temperature datasets (i.e., point or
grid), thus providing a common framework for cali-
brating phenometrics. Calibrated phenometrics can
then, in turn, to be used at regional scale to map var-
iations in LSP across time and space to fit phenology
models for LSMs which employ temperature data and
its derivates such as GDD sums (Fu et al. 2014; Ols-
son and Jönsson, 2014).

Today’s LSMs may describe land surfaces either using
prescribed monthly mean LAI climatologies (i.e., Com-
munity Land Surface Model) or use prognostic simula-
tions involving environmental factors such as
temperature to predict timings of phenological events of
different vegetation types. Models with prescribed phen-
ology will not be able to accurately predict the associated
phenological responses to future climate change in prog-
nostic studies (Richardson et al. 2012). However, if a
prognostic phenology scheme is implemented into a
model employing prescribed LAI, the coupling between
biological processes on the land surface and feedback to
the atmosphere can be restored (Levis and Bonan, 2004).
Thus, improving the LSM phenology is critical as a
multitude of climate system feedback are mediated by
phenology.

5 Conclusion
We showed that selecting pixels classified as vegetation by
the S2 scene classification labels constrains the number of
valid S2 observations, and thus, in the boreal forest zone,
alternative approaches such as vegetation indices should
be preferred in preprocessing the S2 observations for
phenological monitoring. We observed that the seasonal
variations in EVI distributions of phenometrics were fairly
symmetric between spring and autumn for all forest types.
Based on our data, the spring greenup was well captured
by the standard EVI phenometric of 15% in deciduous and
mixed forests, but for evergreen conifer forests a higher
(e.g., 28%), EVI amplitude value should be preferred. Dur-
ing autumn, the end of the thermal growing season was
not well captured by the so-called standard phenometrics.
We noted that the end of the thermal growing season was
best captured by an EVI amplitude of 45% in conifer and
mixed forests whereas in deciduous forests an amplitude
of 33% could be used. In addition, we observed that using
the standard phenometrics to estimate the growing season
length may lead to clear biases in boreal forests. In our
data, using the greenup-dormancy phenometrics resulted
in on average a 1-month overestimation of the growing
season length, while using the midgreenup-midgreendown
phenometrics underestimated the growing season length
on average by one month. A new approach to calibrate
evergreen coniferous forest phenology was developed by
linking ground reference temperature data and satellite-
based greenness data.
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