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Abstract

Key message: The lack of efficient phenotyping capacities has been recognized as a bottleneck in forestry
phenotyping and breeding. Modern phenotyping technologies use systems equipped with various imaging sensors
to automatically collect high volume phenotypic data that can be used to assess trees' various attributes.

Context: Efficient phenotyping has the potential to spark a new Green Revolution, and it would provide an
opportunity to acquire growth parameters and dissect the genetic bases of quantitative traits. Phenotyping
platforms aim to link information from several sources to derive knowledge about trees' attributes.

Aims: Various tree phenotyping techniques were reviewed and analyzed along with their different applications.

Methods: This article presents the definition and characteristics of forest tree phenotyping and reviews newly
developed imaging-based practices in forest tree phenotyping.

Results: This review addressed a wide range of forest trees phenotyping applications, including a survey of actual
inter- and intra-specific variability, evaluating genotypes and species response to biotic and abiotic stresses, and
phenological measurements.

Conclusion: With the support of advanced phenotyping platforms, the efficiency of traits phenotyping in forest
tree breeding programs is accelerated.
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1 Introduction
Forests are key drivers of terrestrial biodiversity, repre-
senting the largest biomass producers. Ensuring that for-
est productivity meets the needs of a rapidly growing
world population is a major challenge (Babin et al.
2021). Forests provide the raw material for many essen-
tial human needs, including construction material, paper
products, firewood, energy, and many non-timber forest
products (e.g., food, oils, and medicinal compounds)

(Crist et al. 2017). Additionally, forest trees are often as-
sociated with the joint production of forest products and
environmental goods, like preserving biodiversity, hunt-
ing, carbon storage, mitigating climate change, maintain-
ing water quality, and representing our cultural and
patrimonial heritage recreation (Strange et al. 2019).
Due to the recent surge in wood consumption and the

need for fast-growing, resilient fiber production planta-
tions, breeding better-adapted trees are imperative. Since
whole-genome sequencing has been achieved, plant
functional genomics studies have entered the big-data
era. However, the acquisition of large-scale phenotypic
data has become one of the major bottlenecks hindering
plant breeding and functional genomics studies.
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Nevertheless, recent technological advances provide so-
lutions to relieve this bottleneck and explore advanced
methods for large-scale phenotyping data acquisition
and processing (Yang et al. 2020; Xie & Yang, 2020).
High-quality phenotyping facilitates the selection of su-
perior parents for applied breeding. Accurate plant phe-
notyping is important for gaining a fundamental
understanding of genotype × environment interaction
that is critical for successful tree breeding. While tree
phenotyping is essential for breeding, it also plays a
major role in understanding the extent of genetic diver-
sity within species, populations, and families. It also im-
proves our understanding of intra-specific biodiversity,
which might become even more important under the
context of climate change and its associated extreme cli-
mate events (heat, floods, drought-, frost-stress, etc.).
Plant phenotyping refers to the determination of quan-

titative or qualitative values for morphological, physio-
logical, biochemical, and performance-related properties,
which act as observable proxies between gene(s) expres-
sion and environment and are important determinants
of growth, quality, and stress resistance characteristics.
Forest trees phenotyping is beneficial to varieties devel-
opment, improving wood quality, matching genotypes to
sites and end uses, improving silviculture practices, and
selecting the best progenies and parents for advanced
generations breeding and selection. Exact trait measure-
ments help in understanding to what extent external fac-
tors impact timber yield and forest health and
development (Dungey et al. 2018).
Traditionally, plant phenotyping is often performed

manually; however, this has become a major bottleneck,
as it is laborious, costly, inefficient, prone to errors,
poorly adaptable, and in many cases requires destructive
sampling (e.g., wood cores, leaf and bud tissue, cuttings).
Phenotyping costs can be an issue, especially for traits
that are expensive to measure (Lebedev et al. 2020). Re-
cently, the rapid advancements of molecular and gen-
omic high-throughput technologies outpaced the
traditional phenotyping methods. It has become clear
that phenotyping had constituted a major bottleneck in
our ability to capitalize on these advancements. Progress
in high throughput phenotyping is therefore urgently
needed.
Throughput, i.e., the number of units at the considered

organizational level (e.g., canopy, individual plant, leaf,
and molecular) that can be measured for a specific trait
at a given time, is also an important determinant for
phenotyping systems (Dhondt et al. 2013). High-
throughput phenotyping (HTP) systems, often defined as
being able to image hundreds or thousands of plants per
day, are paramount in furthering the understanding of
"phenomes" and their genetic underpinning (Fahlgren
et al. 2015). With high-throughput technologies, plants

can be measured in some cases in a non-destructive
fashion, providing useful spatial and temporal informa-
tion with accuracy and precision far exceeding manual
phenotyping. HTP shows great potential for increasing
yields through improved forest management and for ac-
celerating genomics-based tree improvement.
With the rapidly increasing sophistication, capability,

and miniaturization of imaging sensors, the imaging-
based approach is quickly becoming the workhorse strat-
egy for most phenotyping applications. Modern imaging
techniques have high resolution and allow for multi-
dimensional and multi-parameter data visualization.
This ability to perform high-throughput phenotyping
through image analysis has increased interest in auto-
mated approaches to quantify complex traits with the in-
tent of screening germplasm, improving cultivation, and
identifying and quantifying biotic and abiotic stresses.
Most tree phenotyping can be acquired by digital im-
aging sensors and processed by image processing algo-
rithms. With the collection of big phenotypic data of
individual trees and populations, especially image data,
the development of effective approaches to deal with
large-scale image data analysis significantly expands the
capability of traditional image processing. This approach
allows transferring the knowledge generated from the re-
search to practice.
Here, we reviewed current imaging-based phenotypic

engineering efforts to improve tree breeding programs'
efficiency (i.e., gain per unit time, cost and effort). We
highlighted how imaging technologies actively contribute
to acquiring high-dimensional, richly informative data-
sets about forest trees phenotypes. The most commonly
used sensors and platforms for measuring forest trees
were summarized, and HTP facilities' application was
also described. We discussed the main bottlenecks in
phenotyping and the importance of multidisciplinary
collaboration between forest geneticists and engineers to
overcome this challenge.

2 Characteristic of forest tree phenomics
Tree breeding/improvement is different from most crops
breeding programs, as the goal is mainly focused on the
gradual moving of the improved population's target
trait(s) mean relative to the base population while main-
taining adequate diversity for meeting environmental
contingencies that might occur during their long rota-
tion span as well as future selection. This goal is funda-
mentally different from crop plants as the trade-off
between gain and diversity is paramount. Tree breeders
are thus willingly accepting a reduction in gain for main-
taining diversity. Most forest tree species are outbreed-
ing and highly heterozygous, so large amounts of
segregating variation should be maintained in the breed-
ing and production populations.
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In some cases, multiple trait selection is also practiced,
although breeding for growth and yield is generally the
most common. Research supporting tree breeding has fo-
cused on reducing the long-term protracted breeding
cycle, and improving selection efficiency (El-Kassaby and
Lstiburek 2009; Grattapaglia 2017). The breeding cycle be-
gins with the phenotypic selection of several hundred su-
perior trees from ecologically defined areas called
breeding zone (Lind et al. 2018). Clonal copies of these
phenotypically selected trees are grafted and planted in a
replicated copied over multiple breeding arboreta to safe-
guard their genetic legacy, and then crossing and testing
are performed to select genetically proven individuals for
advanced generation breeding and production populations
(White et al. 2007). Marker-based or marker-assisted gen-
omic strategies are being implemented at several stages of
the breeding cycle, including selecting superior parents
and offspring to overcome the longtime needed for com-
pleting a single breeding cycle (Grattapaglia et al. 2018; El-
Kassaby et al. 2020; Garrido-Cardenas et al. 2018; Collard
et al. 2008; Lema et al. 2018).
Forest trees phenotyping includes assessing attributes

affected by genetics, environments, and their interactions
to improve our understanding of how they shape the
complex traits of trees. Presently, there are many high-
throughput phenotyping platforms available worldwide,
but the majority are designed for annual field crops (Liu
et al. 2019b; Virlet et al. 2017; Bai et al. 2018; Salafian,
2017). The establishment and development of tree phe-
notyping platforms have not been widely developed
owing to trees' characteristics that increase the difficulty
of phenotyping.
Firstly, trees reach substantial height, requiring specific

phenotyping equipment to reach their tops. The limited
space of conventional imaging chambers makes it diffi-
cult to measure large trees when they pass certain vege-
tative growth stages. Controlled environment-based
platforms, as they operate in growth chambers or green-
houses, can be used for tree seedling phenotyping; how-
ever, phenotypic data collected from mature trees grown
in the field are the most valuable.
Secondly, trees have thick branches and dense overlap-

ping canopies, which easily cast shades and cause occlu-
sions among branches and leaves. Thus, it is more
challenging to obtain complete and accurate phenotypic
information. For example, surveying leaf inclination and
leaf angle are more frequent for broad-leaved species
than coniferous species. The measurement of leaf angu-
lar distribution (LAD) for plants with large and curvy
leaves could be very time-consuming, if not impossible
(Thapa et al. 2018).
Thirdly, the growth cycle of trees is generally long,

and it takes substantially more resources and material to
carry out phenotyping than annual crops.

Fourthly, developed trees root system requires higher
operating space for phenotyping. Trees root systems are
important components representing the metabolic basis of
growth and development. The distribution and structure
of roots determine trees' ability to utilize soil moisture and
nutrients and reflect their level of adaptation to the envir-
onment. The main bottleneck in the field is collecting
phenotypic data of underground parts by in situ, non-
destructive root measurement technologies. Recently, the
effectiveness of non-destructive methods in tree root map-
ping and assessment is demonstrated, particularly that of
ground-penetrating radar (Alani, et al. 2020).

3 Forest tree phenotyping captured by imaging
techniques
Environmental stresses affect many aspects of tree
growth, development, and distribution and can be
reflected in phenotypic traits. Rapid, non-invasive, and
high-throughput optical sensors and sensing methods
have been widely used to elucidate plant phenomics for
forests and ecosystems. Plant images and reflectance
spectra acquired by optical sensing can uncover the
multi-dimensional, multi-environment, and multi-source
heterogeneous phenotypic traits of forest trees (Fig. 1)
(Zhou, et al. 2020 for subcellular localization; Sun, et al.
2021 for the optical sensing; Pont & Dungey, 2018 for
forest stand; Han, 2021 for organ image of Pterocarya
stenoptera.). The recent development of sensors and
image processing further promotes the use of these tech-
nologies, especially for accelerating forest breeding.
A common approach in forest tree breeding is to se-

lect the best genotype based on a phenotypic expression
under different environmental conditions. Forest tree
phenotyping encompasses morphological, physiological,
biochemical, and performance traits. These phenotyping
traits are increasingly recognized as important for un-
derstanding the structure-function relationship in plants,
assessing the changing interactions among organisms
under climate change (Rewald et al. 2020), sustainable
forest management, and tree improvement programs
(Benavides et al. 2021).
Trees morphological traits are important for studying

forest phenomics and include tree attributes (height,
stem form, diameter at breast height (DBH)), leaf traits
(leaf area index (LAI), leaf area density (LAD), green-
ness, color, distribution, and angle), and canopy charac-
teristics (volume, coverage, structure, phenology (e.g.,
flowering period, leaf coloring time, leaf expansion time,
and leaf-fall time)). Trees have to be characterized for
their features and attributes related to the population
(including the relative position to neighboring trees (so-
cial status)). At the same time, physiological trait con-
sists of photosynthetic quality, canopy or leaf
temperature, and diseases and pest incidence. In
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contrast, biochemical traits, for example, comprise
chlorophyll and lignin contents and water use efficiency.
Rapidly developing sensor techniques are very helpful

for monitoring forest trees phenotypes as each compo-
nent of tree cells and tissues has wavelength-specific ab-
sorbance, reflectance, and transmittance properties.
Optical sensors aim to measure a phenotype quantita-
tively through the interaction between light and trees,
such as reflected, absorbed, or transmitted photons
(Table 1). Imaging spectroscopy of sensors can provide
insight into the drivers of growth dynamics through time
(throughout the tree cycle) and space (at the cell/tissue,
organ, plant, canopy level) growth patterns and the gath-
ered tree spectroscopy data are useful in quantifying per-
formance, vegetation indices, and resilience to
environmental stress (Ge et al. 2019).

4 Imaging sensors and image analysis used for
forest tree HTP
Imaging trees is more than just “taking pictures” as im-
aging sensors extract growth, yield, and stress features in
controlled or field environments and allow real-time
monitoring more readily. Collecting plant phenotypic
data with sufficient resolution (temporal and spatial) and
accuracy represents a challenge in developing standard-
ized methods and protocols for collecting sensor-based
data and converting them to “trait data” (Li et al. 2014).

With the continuous advancements in sensing and in-
strumentation, numerous sensor-based technologies
have been developed and applied for monitoring plant
growth and performance. The process of capturing, ana-
lyzing, and using forest tree phenotyping traits is sum-
marized in Fig. 2.
Phenotyping platforms use semi- or fully automated fa-

cilities, precise environment control, and imaging tech-
nologies to comprehensively assess growth, development,
performance, and adaptation to stress. Plants can be mea-
sured with certain accuracy and precision at different
levels of organization, from organs to canopies. Imaging
sensors are very helpful for detecting plants’ optical prop-
erties, especially for those that cannot be directly seen.
Numerous imaging sensors have been developed to in-

crease the precision, resolution, and throughput, each
with its advantages and limitations. Different imaging
sensors can be used in forest tree phenotyping depend-
ing on the goals of each phenotyping experiment, de-
sired objectives, and outcomes. In contrast to the
conventional methods using visual scoring, optical im-
aging aims for rapid and contact-less measurement of
traits in tree morphology and physiology. Table 2 sum-
marizes the most common optical imaging sensors used
in plant phenotyping under different environments and
the useful information extracted from the images data.
Figure 3 gives an example of Quercus images captured

in the LemnaTec3D Scanalyzer system (LemnaTec

Fig. 1 Schematic overview for acquiring phenotypic data by optical sensors for stress responses
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Table 1 Imaging techniques for estimating forest trees phenotypic traits

Phenotyping traits Sensor Trait functions Reference

RGB/
stereo
RGB

Multispectral/
hyperspectral

Thermal
infrared
(IR)

Fluorescence 3D
laser
scanner

Lidar MRI

Morphological
trait

Tree height √ √ √ Competitive
vigor to capture
light,
competing
either in the
vertical or
horizontal plane

Montagnoli et al.
2016; Michael et al.
2004; Tansey et al.
2009; Kenneth et al.
2014; Clark &
Roberts, 2012; Edson
& Wing, 2011; Zhang
et al. 2021

DBH (diameter
at breast
height)

√ √ √ Michael et al. 2004;
Ren et al. 2015;
Dong & Isler, 2018

Crown
projection area,
canopy volume

√ √ √ √ Ren et al. 2015; Xiao
et al. 2019; Kolarik
et al. 2019

Canopy
coverage

√ √ √ √ Leblanc et al. 2005;
Dong & Isler, 2018;
Zarco-Tejada et al.
2004; Falkowski et al.
2008; Oliveira et al.
2020

Canopy
structure

√ √ √ √ Li et al. 2021;
Leblanc et al. 2005;
Dong & Isler, 2018;
Coops et al. 2020;
Nishikami et al.
2007; Roberts et al.
2007

Tree stem √ √ √ Cambium
protection and
mechanical
support

Kenneth et al. 2014;
Shengyong et al.
2019; Edson & Wing,
2011

Leaf area index
(LAI), leaf area
density (LAD)

√ √ √ √ Indicators of
the growth,
degree of light
interception,
light-harvesting
efficiency

Morsdorf et al. 2006;
Leblanc et al. 2005;
Hosoi & Omasa,
2006; Anderson
et al. 2015

Leaf greenness,
leaf color

√ √ √ Montagnoli et al.
2016; Inoue et al.
2014; Lopes et al.
2016; Kolarik et al.
2019; Novoa et al.
2002

Leaf
distribution,
leaf angle

√ √ √ Leblanc et al. 2005;
Saremi et al. 2014;
Wang et al. 2016

Phenology √ √ √ √ Shin et al. 2016;
Clark & Roberts,
2012; Miller 2015;
Sankey et al. 2014

Physiological
trait

Photosynthetic
status

√ √ √ √ √ Trade-offs
between
investment in
support and
photosynthetic

Bjorn et al. 2010;
Santini et al. 2019;
Clark & Roberts,
2012; Bjorn et al.
2010; Ma et al. 2016

Canopy or leaf
temperature

√ Cohen et al. 2012;
Richardson et al. 2021

Plant diseases
and pests

√ √ √ √ Ana et al. 2019;
Shah et al. 2006;
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Table 1 Imaging techniques for estimating forest trees phenotypic traits (Continued)

Phenotyping traits Sensor Trait functions Reference

RGB/
stereo
RGB

Multispectral/
hyperspectral

Thermal
infrared
(IR)

Fluorescence 3D
laser
scanner

Lidar MRI

Singh et al. 2018;
Morimoto &
Yamada, 2010;
Mutanga & Ismail,
2010

Polyphenols √ √ Development,
maturity, and
senescence

Skidmore et al. 2010:
Sun, et al. 2021

Biochemical
trait

Chlorophyll
content

√ √ √ √ √ √ Trade-offs
between
investment in
support and
photosynthetic,
water use
efficiency

Jin et al. 2007;
Martina et al. 2017;
Xiao et al. 2018;
Hakala et al. 2015;
Santos et al. 2018;
Coupel-Ledru et al.
2019; Eitel et al.
2010; Zarco-Tejada
et al. 2019

Water content √ √ √ Mutanga & Ismail,
2010; Jian et al. 2011

Nitrogen,
nutritional
status

√ √ √ Tang, et al. 2017;
Zhang, et al. 2013;
Chen et al. 2021

Lignin √ √ √ Kupkova et al. 2012;
Thumm et al. 2016;
Uner et al. 2009;
Karaman et al. 2009

Performance
trait

AGB (above-
ground
biomass)

√ √ √ Growth-survival
trade-off

Feliciano et al. 2012;
Garai et al. 2010;
Edson & Wing, 2011;
Wang et al. 2021

Yield √ √ √ √ Choi et al. 2017;
Bergseng et al. 2015;
Underwood et al.
2016

Fig. 2 The process of capturing, analyzing, and application of forest tree phenotyping traits
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Table 2 Summary of the most common imaging sensors used in plant phenotyping experiments under different application
environments

Imaging
techniques

Sensor Phenotype parameters Imaging
environment

Advantage Limitations Potential
application

Visible light
imaging

CCD, CMOS Tree height, tree stem,
DBH, LAI, LAD, leaf
greenness, leaf color,
canopy volume,
chlorophyll content,
phenology, canopy
coverage, plant diseases
and pests, canopy
structure, leaf
distribution, leaf angle,
photosynthetic status

Growth
chamber;
greenhouse;
field

Low cost; high
resolution; suitable for
UAV, providing color
information

Cumbersome
postprocessing and limit
automatically processing
image; limited to visual
three spectral bands;
sunlight and shadows
can result in under or
overexposure; only
provides plant
physiological
information, no spectral
calibration; only relative
measurement

Growth monitoring,
phenology
monitoring, pest
and disease
detecting, stress
response,
morphological
structure capture

Stereo
camera, a
time-of-flight
camera

Tree height, tree stem,
DBH, LAI, LAD, leaf
greenness, leaf color,
canopy volume, canopy
coverage, canopy
structure, leaf
distribution, leaf angle

Growth
chamber;
greenhouse;
field

High resolution;
providing depth images;
rapid acquisition

Difficult postprocessing;
experimental conditions
influence its
performance; low
resolution, high noise;
many restrictions on
taking photos; field
application is limited

Growth monitoring,
structure capture

Multispectral
imaging

Multispectral
camera

Canopy coverage,
canopy volume, canopy
structure, chlorophyll
content, leaf greenness,
leaf color, plant diseases
and pests,
photosynthetic status,
water content, lignin

Growth
chamber;
greenhouse;
field

Easy in image
processing; mature
technology

Limited to several
spectral bands; spectral
data should be
frequently calibrated
using referenced objects;
effects of camera
geometrics, illumination
condition, and sun angle
on the data signal

Growth monitoring,
phenology
monitoring, pest
and disease
detecting, stress
response,
morphological
structure capture

Hyperspectral
imaging (HSI)

Hyperspectral
camera

Leaf and canopy water
status; leaf and canopy
health status; canopy
coverage, canopy
volume, canopy
structure, chlorophyll
content, leaf greenness,
leaf color, plant diseases
and pests,
photosynthetic rate,
lignin

Growth
chamber;
greenhouse;
field

High spectral resolution;
Containing abundant
spectral information
with many bands;
background interference
can be removed;
suitable for UAV

Frequent sensor
calibration; low spatial
resolution; cost is high;
large image data sets for
hyperspectral imaging;
complex data
interpretation; changes in
ambient light conditions
influence signal; canopy
structure and camera
geometries or sun angle
influence signal; image
data management is
challenging

Growth monitoring,
phenology
monitoring, pest
and disease
detecting, stress
response,
morphological
structure capture

Thermal
infrared
imaging

Thermal
infrared/
Longwave
infrared
cameras (TIR/
LWIR)

LAI, LAD, leaf greenness,
leaf color, chlorophyll
content, phenology,
plant diseases and pests,
canopy or leaf
temperature,
photosynthetic status,
AGB, lignin

Growth
chamber;
greenhouse;
field

Wide measurement
range; background
interference can be
removed; suitable for
UAV

Imaging sensor
calibration and
atmospheric correction
are often required;
changes in ambient
conditions lead to
changes in canopy
temperature; making a
comparison through
time difficult;
necessitating the use of
reference; difficult to
separate soil temperature
from plant temperature
in sparse canopies;
limiting the automation
of image processing

Growth monitoring,
phenology
monitoring, pest
and disease
detecting, stress
response,
temperature testing

Fluorescence
imaging

Fluorescence
cameras and

Chlorophyll content,
canopy coverage, plant

Growth
chamber;

Sensitive to fluorescence
and water stress

Difficulty in fluorescence
excitation; limited field

Growth monitoring,
phenology

Bian et al. Annals of Forest Science           (2022) 79:22 Page 7 of 21



Table 2 Summary of the most common imaging sensors used in plant phenotyping experiments under different application
environments (Continued)

Imaging
techniques

Sensor Phenotype parameters Imaging
environment

Advantage Limitations Potential
application

(FLUO) setups diseases and pests,
photosynthetic status,
water content, lignin

greenhouse;
field

application; pre-
acclimation conditions
required; difficult to
measure at the canopy
scale because of the
small signal to noise ratio

monitoring, pest
and disease
detecting, stress
response

3D laser
imagine

Laser
scanning
instruments

Tree height, tree stem,
DBH, LAI, LAD, canopy
volume, chlorophyll
content, canopy
structure, leaf
distribution, leaf angle,
AGB

Growth
chamber;
greenhouse;
field

Long measurement
distance; high precision;
good penetration

High cost; wind and fog
cause noise

Growth monitoring,
structure capture

Light
detection and
ranging
(LIDAR)

LIDAR sensor Tree height, tree stem,
LAI, LAD, canopy volume,
canopy volume,
chlorophyll content,
phenology, canopy
coverage, canopy
structure, leaf
distribution, leaf angle,
photosynthetic status,
AGB

Growth
chamber;
greenhouse;
field

Providing three-
dimensional shape; suit-
able for UAV

High cost; sensitive to
the small difference in
path length; specific
illumination required for
some laser scanning
instruments, data
processing is time-
consuming; integration
or synchronization with
GPS and encoder pos-
ition systems is needed
for georeferencing

Growth monitoring,
structure capture

Nuclear
magnetic
resonance
imaging (MRI)

MRI sensor Internal structures,
metabolites,
development of root
systems, water presence

Growth
chamber

Available for screening
3D structural
information

Low throughput, data
acquisition is time-
consuming, software
tools need to be further
developed to analyze
data and obtain physio-
logically interpretable re-
sults, and the image
segmentation and recon-
struction must be further
improved for high
throughput tree
phenotyping

Acquire 3D datasets
of plant structures,
complete root
systems growing in
or near natural soil,
and entire plants

Fig. 3 Illustrative Quercus images captured with the visible, steady-state fluorescence, hyperspectral, and thermal infrared sensors in LemnaTec3D
Scanalyzer system. a Quercus image captured with a visible camera. b Quercus image captured with a fluorescence camera. d Quercus image
captured with a hyperspectral camera. d Quercus image captured with a thermal infrared camera
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GmbH, Aachen, Germany) consisting of four imaging
chambers: Visible (RGB), steady-state fluorescence,
hyperspectral, and thermal infrared. Using a commercial
platform and software, such as Python, Matlab, Visual
C++, plants features can be extracted from the back-
ground for measuring size, color, geometry, and archi-
tecture using the visible (RGB) camera. A thermal
infrared camera was used to monitor canopy or leaf
temperature. Images acquired with a fluorescence cam-
era allowed the assessment of chlorophyll concentration.
Reflectance spectra with a hyperspectral camera can esti-
mate leaf water content and canopy health parameters.
A robust and accurate method was developed for rapid
and noninvasive determination of the phenotypic traits
of leaves using visible, steady-state fluorescence, hyper-
spectral, and thermal infrared images (Zhang et al.
2022). The results suggested that the different imaging
systems combined with data fusion could be used syner-
gistically to improve phenotypic traits prediction.
Many commercial platforms are developed for a lim-

ited range of species, encompassing small plants such as
Arabidopsis (Boyes et al. 2001; Goggin et al. 2015) and
the primary cereal crops (Bai et al. 2019; Paulus et al.
2014; Bai et al. 2018). The complex characteristics of
trees mean higher requirements for platform structure,
image processing algorithm, and multi-source sensor in-
tegration for phenotypic analysis.

4.1 Visible light imaging
A visible image is based on digital images intended to
mimic human perception to provide information or in-
put to systems that need data for plant phenotyping ap-
plications to trait-based physiological breeding. Red,
Green, Blue (RGB) cameras sense the reflected energy
from the plants in the visible part of the electromagnetic
spectrum. CCD (charge-coupled device) and CMOS
(complementary metal oxide semiconductor) are the
most broadly used technologies in image sensors. They
can produce a very large number of images in very short
periods. Visible light imaging is most commonly ac-
quired due to the low cost of cameras and the wide
range of traits that can be derived.
Stereo vision can provide in-depth information from

motion techniques by using two mono-RGB cameras. It is
an affordable 3D image acquisition system compared with
other technologies such as LIDAR (light detection and
ranging). Stereo vision performance is affected by changes
in the scene illumination and requires stereo–matching al-
gorithms to improve accuracy. Moreover, their perform-
ance is adversely affected by the objects' lack of surface
texture. Time-of-flight (ToF) camera has been the last im-
aging device to be incorporated into automatic plant phe-
notyping. The ToF camera employs near-infrared emitters
and measures the distance between the camera's objective

and each pixel. ToF is highly suitable for real-time applica-
tion and allows for precision 3D reconstruction; however,
resolution and sunlight are two major factors affecting
ToF camera performance.

4.2 Multispectral imaging
Multispectral imaging is widely used for fast, non-
destructive measurements of forest tree phenotypic
traits. Plants in different growth statuses reflect different
spectral signatures. Multispectral cameras capture im-
ages from several discrete bands, and the spectral bands
may not be continuous (Kolarik et al. 2019). Multispec-
tral cameras commonly include 3–10 spectral bands in
the visible and infrared spectral regions. The most used
spectral band channels are green, red, red-edge, and NIR
(near-infrared). Due to the limited number of available
bands multispectral cameras are mainly used for VI
(vegetation indices)-based traits.

4.3 Hyperspectral imaging
Hyperspectral imaging typically captures several hun-
dreds of continuous bands within a specific range of
wavelengths. The spectral resolution is the main factor
that distinguishes multispectral from hyperspectral im-
agery (Jiang et al. 2021). Compared with multispectral
imaging, hyperspectral cameras have a higher spectral
resolution, with continuous or discrete spectral bands in
the visible and infrared spectral region (Huang et al.
2020). Due to the large volume of data associated with
spectral imagery, their operation is more complex.
Hyperspectral cameras indirectly assess advanced pheno-
typing traits, including leaf water content, pigments con-
centration, and photosynthesis parameters.

4.4 Thermal infrared imaging
Thermal infrared imaging is used to measure radiation
in the thermal spectral infrared regions. It may be used
to indicate the temperature gradient across the canopy
to study plant water stress and stomatal conductance re-
lations. Abiotic or biotic stresses often result in de-
creased photosynthesis and transpiration rates.
Measuring plants temperature by thermal imaging can
be a reliable way to detect changes in the physical status
of plants in response to different abiotic or biotic
stresses (Richardson et al. 2021). In forest tree phenotyp-
ing, thermal infrared imaging offers potential application
in breeding programs for drought-prone environments
by detecting canopy temperature.

4.5 Fluorescence imaging (FLUO)
Fluorescence imaging is commonly used to detect the
resilience of a plant's metabolic status. Fluorescence is a
phenomenon, when the light is re-emitted by molecules
after they absorb radiation in the ultraviolet, visible, and
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near-infrared spectral wavelengths. Irradiation of chloro-
plasts with actinic or blue light will produce some remis-
sion of absorbed light by chlorophyll. Because using
modulated fluorescence requires substantial power for
rapid illumination, fluorescence imaging is often used in
a controlled environment. The proportion of re-
remission light compared with the irradiation depends
on the plant's ability to metabolize the harvested light
(Martina et al. 2017). The re-emitted light is the fluores-
cence, and it is a good indicator of the plant's capacity
to assimilate actinic light. Furthermore, combining an
actinic light source with brief, saturating blue pulses can
be used to measure the plant's efficiency of photo-
assimilation, non-photochemical quenching, and other
physical plant parameters.
Chlorophyll fluorescence is a sensitive indicator of the

physiological status of plants and it can be used to detect
abiotic and biotic stress in forest trees. The correspond-
ing fluorescence parameters include maximal photo-
system II quantum yield Fv/Fm, actual photosystem II
quantum yield △F/Fm', chlorophyll index, anthocyanin
index. These parameters can be used to carry out studies
of plant stress analyses, photosynthetic functions, and
chloroplast content estimations. Current fluorescence
sensors are focused mainly at the leaf level. Chlorophyll
fluorescence at the canopy scale is restricted by sensor
and background noise, decreasing the signal-to-noise
ratio.

4.6 3D laser imagine and light detection and ranging (LIDAR)
3D laser imaging, including LIDAR, is an active remote
sensing technique that uses laser pulse light to directly
measure the 3D distribution of plant canopies. It is used
for the creation of a cloud of points that reconstructs
trees 3D structure. 3D laser imaging creates accurate
and detailed 3D models by structured light projection
and laser range scanners (Fernando et al. 2017).
Satellite-based LIDAR systems are used to measure tree
height, canopy volume, and AGB (above-ground bio-
mass) (Chen and Cihlar, 1996; Gwenzi et al. 2017; Kelln-
dorfer et al. 2010). The direct utility of LIDAR
application in tree improvement was demonstrated in
assessing tree height and crown geometric features in
Douglas-fir progeny testing and realized yield trails in
British Columbia, Canada (Grubinger et al. 2020; Du
Toit et al. 2020, 2021). Recent application using both
manned and unmanned flights has allowed the estima-
tion of biomass dynamics of a coniferous forest using
Landsat satellite images, together with ground and air-
borne LIDAR measurements (Badreldin and Sanchez-
Azofeifa, 2015; Guo et al. 2018). Aboveground biomass
and volume, derived from either upper proportions of a
large-footprint full-waveform LIDAR profiles, or statisti-
cally modeled from discrete return small-footprint

LIDAR point clouds, to be the most commonly extended
forest attributes, followed by canopy cover, basal area
and stand complexity (Coops et al. 2021). Some 3D laser
scanners could fuse color and point cloud, generating
colored point clouds. Even for LiDAR which does not
have color information, several publications introduced
methods to fuse color images and point clouds. There-
fore, the major limitation is how to obtain dense point
clouds efficiently. For forestry applications, usually, it
needs to scan very large areas, so how to obtain 3D
point clouds within a short time period is an important
factor.

4.7 Nuclear magnetic resonance imaging (MRI)
Magnetic resonance imaging (MRI) is a non-invasive im-
aging technique that employs radio frequency magnetic
fields to construct tomographic images (Boviki, 2005). In
plant phenomics, MRI uses nuclear magnetic resonance
to generate images and detects nuclear resonance signals
originating from stable isotopes (C13 and N15) (Melkus
et al. 2011). MRI is also used to visualize 3D structures
and metabolites. This method poses a great potential to
monitor physiological processes occurring in vivo. In
addition, MRI can describe moisture distribution and be
applied for the non-invasive quantification of trees or
tree organ water content and estimate water diffusion
and transport. One of the greatest advantages of MRI is
its ability to distinguish different water levels in wood
with the help of relaxometry (Zhou et al. 2018).

4.8 Multi-sensor fusion
Multi-sensor fusion refers to the techniques that inte-
grate complementary information from multi-image sen-
sor data. Together with different sensors, they form an
integrated system to provide data support and decision-
making basis for intelligent forestry management. The
new images are more suitable for human visual percep-
tion and computer processes such as segmentation, fea-
ture extraction, and object recognition. Different
imaging sensors are optimized for diverse operating
ranges and environmental conditions. However, individ-
ual sensors may not receive all the information necessary
to detect an object (leaf, plant, and canopy) by human or
computer vision.
Multi-sensor fusion is one of the key technologies to

improve the perception ability of HTP, and its research
is of great significance to HTP application. Compared
with the acquisition of single information, based on
multi-sensor fusion method, various types of multi-
source data are subjected to different operations and
processing to extract the characteristic information of
the target for analysis and understanding, finally realiz-
ing the identification and recognition of the target. An
effective combination of such sensors with different
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features or viewing positions could extend the capabil-
ities of each individual sensor. The integration of mul-
tiple sensors will strongly enhance the functionality of
sensors in forest tree phenotyping. A multi-sensor obser-
vational approach is developed to identify imagery pixels
of a black poplar (Populus nigra) breeding population at
the canopy level were captured and analyzed by multi-
sensor. Implementation of the surface energy balance
from data collected with TIR, RGB, and multispectral
images afforded phenotyping a whole black poplar pro-
geny exposed to water limitation conditions in the field
(Tauro et al. 2022). Most notably, the illustrated work
demonstrates a multi-sensor data fusion approach to
tackle the global challenge of monitoring landscape-scale
ecosystem processes at fine resolution. It can be as-
sumed that increased attention to the integration of
multi-sensor with deep-learning methods to improve es-
timation accuracy for forest tree phenotyping is needed.

4.9 Deep learning in plant image analysis
With the development of high-throughput plant pheno-
typing techniques, big phenotypic data of various plant
optical sensors can collect image data. As images are
machine-produced data, but image types and processing
procedures may be very different, image analysis plays
an important role in genomic and proteomic projects,
which include image preprocessing, segmentation, and
features extraction (Fernando et al. 2017). There is an
urgent need to develop effective approaches to dealing
with large-scale image data analysis to explore their bio-
logical and physiological mechanisms. Deep learning
provides an opportunity to extract useful traits from the
complicated phenotypic dataset, bridging the knowledge
gap between genotype and phenotype for fundamental
research and engineering applications in a breeding

program (Hwy et al. 2019). The databases with raw
image have to go through deep learning-based data ana-
lysis in order to generate results interpretable by
humans. For improving the image analysis systems, deep
learning has played a key role (Fig. 4). Deep neural net-
works have many layers which transform input images
to outputs (i.e., healthy or stressed) with learning deep
features.
Recently, a series of publications focused on forest tree

phenotyping relating to the following algorithms: Convo-
lutional Neural Network (CNN), Restricted Boltzmann
Machines (RBM), Auto Encoder (AE), Sparse Coding
(SC), and Recurrent Neural Network (RNN). The pub-
lished work involved the phenotypic identification and
classification over various varieties of trees from tissues,
organs, and plant scales singly or combined (Cen et al.
2020). Deep learning showed the most potential capabil-
ity for morphology and physiological information extrac-
tion, image segmentation and identification, and pest
detection. Deep learning has been applied successfully in
tree species classification (Guan et al. 2015), stock vol-
ume estimation (Liu et al. 2019a), tree crown detection
(Weinstein et al. 2019; Weinstein et al. 2020), recogni-
tion of diseased pine tree (Hu et al. 2020), oak acorn via-
bility recognition (Przyblo et al. 2019), conifer/deciduous
classification (Hamraz et al. 2019). Studies also found
that the qualitative analysis of abiotic stress could be di-
agnosed by transfer learning to reduce training time
without affecting the model’s prediction capability, espe-
cially network architectures with mature applications
scenarios manifested stable performance in terms of
adaptability and migration based on CNN or integrated
with CNN.
Most of the published work is based on the 2D images

in tree phenotyping research, such as digital and

Fig. 4 Overflow workflow for processing image-based tree phenotypic data
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greyscale images. Such images could be enabled to oper-
ate in the deep transfer learning architecture, while such
pre-trained transfer networks could not be applied to
the 3D datasets, such as hyperspectral images, which are
more sensitive to detecting the early-infected plants. In
the future, deep neural networks that can be used for 3D
images should be the focus (Gao et al. 2020). It can be
assumed that researchers will have to pay more attention
to integrating multi-sensor data with deep learning
methods to improve the features of the image acquisi-
tion system.

5 Controlled environment and field HTP platforms
with imaging sensors
The rapid advances in phenotyping technologies have re-
cently enabled researchers to collect high-quality and re-
peatable phenotypic data. HTP platforms can utilize
different leaf-level, near canopy, and airborne sensors to
acquire multi-source data on a large scale over a short
period. Forest trees phenotyping platforms are divided
into those used in controlled environments or in the field.

5.1 Controlled environment phenotyping platforms
Some HTP platforms have been applied in environmen-
tally controlled growth chambers or greenhouses, where
stable meteorological conditions can be created to obtain
high-quality images amenable to further processing. Con-
trolled environment phenotyping platforms have the ad-
vantages of high precision, superior repeatability, and
negligible interference from external environments. It in-
cludes “plant-to-sensor” (tree movement type) and “sen-
sor-to-plant” (sensor movement type) working modes
according to the motion state of target plants and sensors
during the operation. These environmentally controlled
platforms can be used to obtain tree phenotypic informa-
tion of containerized seedlings or potted saplings.
“Plant-to-sensor” means that the sensor’s position is

fixed, and the potted target plants enter the working
area through a conveyor belt and other transporting
mechanisms. The sensors collect and analyze the data of
the target plants in batches. The platform of the “plant-
to-sensor” type is relatively well-developed, mainly due
to the sample small size and uniform environment; how-
ever, the overall efficiency of the plant-to-sensor method
is low, and it can affect the plant’s condition (i.e., dam-
age) at the mature stage, causing errors in monitoring.
The "sensor-to-plant" phenotyping platform moves the

sensors to the target plant areas to obtain information.
This scanning operation mode keeps the position of
trees fixed, has less interference to tree growth, and has
great flexibility in sensor movement and high measure-
ment efficiency. However, the system poses a great chal-
lenge for both hardware integration and software
development to collect real-time population data and

realize high-throughput phenotypic parameter extraction
in the process of sensor movement.
A “plant-to-sensor” platform was applied to assess bio-

physical traits and drought response in two oak species
(Quercus bicolor and Q. prinoides) in a controlled envir-
onment. Potted oak seedlings placed on an automatic
conveyor belt entered sequentially different imaging
chambers with RGB and hyperspectral cameras. Robotics
in the system transfer the plants around and facilitate
imaging by lifting and rotating the plants. By quantifying
oak seedlings’ growth and development [plant height,
projected leaf area (LA), plant/canopy width, Convex-
Hull, and plant aspect ratio], the species’ response to
drought was evaluated (Del-Campo-Sanchez et al. 2020).
Additionally, a “sensor-to-plant” phenotyping platform
was built in the growth chamber to evaluate the growth
rate of containerized tree seedlings during the pre-
cultivation phase following seed germination. Seeds of
four tree species (Fagus sylvatica., Quercus ilex, Picea
abies, and Pinus sylvestris) were analyzed by collecting
stereoscopic RGB images at regular time intervals. Com-
parative analysis of these images enabled calculating the
increments of seedlings' height and leaves greenness per-
centage (Moran-Duran et al. 2020).
The greenhouse-based analyses to quantify certain

traits of forest trees face several major challenges. One
reason is that many important traits occur only when
plants are grown in the field. For example, the steepness
of a slope affects tree growth through the differential in-
cidence of solar radiation, wind velocity, and soil type,
which is known as the slope effect. A steep slope is also
susceptible to rapid surface runoff and soil erosion. The
influence of this abiotic factor on trees growth and dis-
tribution is significant in the field (Måren et al. 2015).
However, it is difficult to mimic the slope effect in the
greenhouse as all plants are grown on a flat surface.
Seedlings in greenhouses are grown in artificially con-
trolled environments that might significantly alter the
normal pattern of trees growth and development.

5.2 Field phenotyping platforms
Field phenotyping includes development at two contrast-
ing levels of resolution, tree-based, and area-based, and
both are primarily focused on characterizing tree
growth. Tree-based phenotyping aims to quantify and
isolate the effects of competition and environment on
individual trees' growth and then accurately identify
what trees with particular genotypes are within forest
stand level. Genetic testing can then be applied to those
trees, and specific parents are identified to improve the
gene pool used in breeding. Area-based phenotyping
aims to characterize stand-level performance, identifying
superior combinations of seed sources, stands, and silvi-
cultural treatments. It will also allow managers to
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maximize production by identifying the optimal combin-
ation of seedlot, site, and silviculture within their forest.
The difficulty with outdoor platforms increases due to

limitations in the actual image acquisition devices and
the uncontrolled conditions that directly affect image
quality, especially for forest trees, due to the intrinsic
difficulties in measuring long-lived tall trees in their nat-
ural environment. Regardless of recent developments,
the application of HTPP in forestry is still in its infancy.
Recently, field phenotyping platforms have been estab-

lished to assess plants’ traits in fixed-site experiments at
a sufficient throughput. Thus, recent research projects
have involved setting mobile field phenotyping platforms
often termed “phenomobiles” (Deery et al. 2014). In
addition to the field soil conditions limiting the opera-
tions, many phenomobiles require manual operation
(Zhang et al. 2020) as they cannot be driven through the
experimental fields at high speed, constraining the
throughput and impairing efficiency (David et al. 2016).
Due to the limitation of acquisition speed and area, the

vehicle-mounted system has a certain time asynchrony for
large-scale phenomic data acquisition for forest trees,
which will lead to errors of canopy parameters. Aerial
phenotyping platforms are increasingly considered as an
alternative option to overcome the limitations associated
with ground-based phenotyping platforms. Aerial pheno-
typing platforms may be classified as MAVs (manned aer-
ial vehicles), UAVs (unmanned aerial vehicles), and
satellites. Aerial phenotyping platforms enable the rapid
characterization of wide forestry areas within hours.
In the past 20 years, UAV platforms have been widely

used in forest resource surveys and disaster assessment
(Mukherjee et al. 2019). Compared with the traditional
airborne platforms, the small payload and short measure-
ment duration of UAV platforms are the major limitations
of their application. UAVs are commonly equipped with
customizable sensor payloads for phenomic data collec-
tion. Miniaturized light-weighted airborne sensors have
been developed to meet the limited payload capability of
small UAV platforms. Multiple types of cameras and other
sensors are now available. These platforms are suitable for
measuring spectral and morphological information, in-
cluding plant height and canopy surface profiling. UAV
phenotyping platforms extract morphological information
by LiDAR and SFM (Structure-from-Motion). The basic
idea of SFM is to make the camera move to acquire sev-
eral images from multiple perspectives as a UAV flies over
a field. Through mathematical analysis of the object in the
image sequence, the 3D growth parameters of trees are
calculated, and the 3D plant traits, including population,
tree height, DBH, flowering time, and forest growing
stock, are subsequently obtained.
All phenotyping platforms have distinct advantages

and limitations for field-based forestry applications.

Phenomobiles have a limited coverage area, so it directly
affects the number of samples. The payload capacity of
the drone limits UAV's application in phenotyping. Be-
cause the electric motor must directly generate all of the
required lift to keep the vehicle in the air, UAV plat-
forms tend to have a small payload (sensor) capacity.
They are problematic to be operated in windy condi-
tions, and they produce “downwash”—air turbulence
below them that can strongly affect canopy structure.
They also fly at low speed and exhibit a short flight time
(between battery charges). UAV platforms typically are
far from the canopy to be investigated. Therefore, the
resolution of images is often low compared to the prox-
imal platform but still significantly higher than airborne
or spaceborne platforms.
It is clear that high-throughput field phenotyping faces

several challenges. Firstly, high-quality plant phenotypic
data is difficult to obtain in natural field conditions. For
example, the wind will blur plant images and unsuitable
for quantitative analysis. Rapidly fluctuating radiation
levels (due to clouds) could significantly reduce the accur-
acy of the passive-type spectroscopic measurements (Ge
et al. 2016). Secondly, a key challenge of using UAVs for
deriving tree structure/DBH, etc., in forests is the exact
localization of trees from the ground to link them to UAV
signals. Thirdly, the platform should measure and inte-
grate many phenotyping traits that take different data for-
mats (point measurement, spectra, and images).

6 Application of HTP platforms
Automated HTP platforms equipped with imaging sen-
sors can enable the evaluation of larger populations,
which increases selection intensity and improves selec-
tion accuracy. Currently, phenotyping might occur in
large forests on the landscape level and individual trees
in growth chambers. Recent research that has been car-
ried out covers trees phenotyping at a large scale, from
various genotypes using simple and repeatable technol-
ogy to individual trees using precise and accurate
methods. However, this remote sensing approach on sin-
gle trees has scarcely been applied.

6.1 Survey of actual inter and intraspecific variability
A better understanding of species coexistence and com-
munity dynamics may benefit from more insights on
trait variability at the individual and species levels. Inves-
tigating the phenotypic characteristics of trees offers an
excellent system to understand the relative impact of in-
traspecific and interspecific variability on community as-
sembly, due to trees’ phenotypic plasticity, and the
strong influence of environmental variables have on
their spatial distribution and individual performance.
The main objective of the survey is to measure the
growth status (height, DBH, crown density, leaf nitrogen
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content, and chlorophyll content), wood volume, bio-
mass, or species diversity. Most forest inventories are
based on analysis of sampling plots, and the results are
used to infer the global parameters of the forest cover
under study. HTP platforms have great potential to sur-
vey forest resources over large spatial scales.
The application of aerial LiDAR systems (aerial laser

scanners, ALS) to forest measurements is operative for
evaluating forest vegetation cover and its characteristics.
ALS can simultaneously provide horizontal and vertical
information on canopy structure. Specifically, the com-
bined use of ALS and plot-level information has effect-
ively increased in the last few years and has proven
effective for extracting forest inventory parameters (Vas-
taranta et al. 2013; Wulder et al. 2013). However, ALS
data is not yet extensively used for strategic forest inven-
tory assessments at a national level. Instead, they are
used operationally for stand-level forest management in-
ventories (Barret et al. 2016). Several studies provide dif-
ferent approaches to the individual tree or plot-level
phenotyping traits of the vegetation cover from terres-
trial HTP platforms with laser scanning (Cabo et al.
2018; Yan et al. 2018).
The recent development of high-resolution spectral

sensors carried by airborne and space-borne devices
makes foliage spectral traits viable for mass phenotyping
in forest trees. HTP platforms such as NASA's airborne
visible/infrared imaging spectrometer program (AVIRIS)
provide high spectral resolution (224 bands) across a
large spectral range. These advanced platforms enable
the accurate measurement of a suite of canopy foliar
traits that play key roles in a survey of actual inter and
intraspecific variability. Combining imaging spectroscopy
(AVIRIS) data with genetic, biochemical, microbial, and
biogeochemical data helps determine how genetic vari-
ation influences below-ground processes at the land-
scape scales (Madritch et al. 2014). The survey of actual
inter and intraspecific variability provides scientific data
for the species diversity maintenance mechanism, popu-
lation competition research, and proper management.

6.2 Test for the adaptation of genotypes and species to
abiotic stress
High throughput phenotyping should be used to test
trees’ response to future climate change scenarios and
for breeding stress-resistant varieties. Forest trees are
sessile and continue to develop over many growing sea-
sons. Field-grown trees are routinely exposed to environ-
mental stress. Abiotic stresses, such as drought,
waterlogging, salinity, wind, heat, and cold, adversely
affect tree growth and thus forest productivity and play
a major role in determining the geographic distribution
of tree species. The development of stress-resistant culti-
vars is one of the challenging tasks for tree breeders due

to its complex inheritance and polygenic regulation.
Evaluating genetic material for abiotic stress tolerance is
complicated due to its spatiotemporal interactions with
environmental factors. The conventional breeding ap-
proaches are costly, lengthy, and inefficient in achieving
the expected gain in abiotic stress tolerance. Tree re-
sponse and tolerance to abiotic stress are complex bio-
logical processes that are best analyzed at a system level
using genotype and phenotype (Harfouche et al. 2014).
The use of HTP platforms extends the suite of traits that
can be measured and provides a better understanding of
stress tolerance.
HTP platforms help us understand how forest trees

adapt to harsh environmental conditions. The HTP plat-
form was applied to investigate the drought response of
two coexisting deciduous tree species (Quercus cerris
and Fraxinus ornus) in a natural mixed forest, and the
results have shown that chlorophyll fluorescence meas-
urement is particularly suitable for phenotyping the
drought stress response of adult trees in the field (Salva-
tori et al. 2016). An aerial imaging platform with a ther-
mal camera detected palm trees and pure-canopy pixels.
An automatic procedure was suggested to detect palm
canopy from aerial thermal images, and a semi-
automatic method was proposed for further detection
under water stress (Gauthier & Jacobs, 2019).
The success of genomic assisted breeding (GAB) de-

pends upon the precision in marker-trait association and
estimation of genomic estimated breeding values
(GEBVs), which mostly depends on coverage and accur-
acy of genotyping and phenotyping (Arenas et al. 2021).
A wide gap between the discovery and practical use of
quantitative trait loci (QTL) for improvement has been
observed for many important traits. Such a limitation
could be due to the low accuracy in QTL detection,
mainly resulting from low marker density and manually
collected phenotypes of complex traits (Bhata et al.
2020). Accurate and precise phenotyping using HTP
platform can improve the precision and power of QTL
detection. Therefore, HTP can enhance the practical
utility of GAB along with a faster characterization of
germplasm and breeding material (Fig. 5).
The benefits of a successful seedling establishment and

growth can extend beyond the current growing season.
Therefore, early plant selection for desirable morpho-
logical and physiological traits and the ability to quantify
the changing competitive relationship between geno-
types and species under global climate change are crit-
ical. Roots, stems, and leaves were observed using a
platform equipped with laser scanning to research pop-
lar adaptation to drought stress (Zhou et al. 2020). HTP
platform with RGB and hyperspectral cameras were suc-
cessfully used to evaluate seedlings of two 1-year-old
oak species, Q. bicolor and Q. prinoides, where the
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former showed faster initial growth earlier in the season
than the latter under drought stress, resulting in a larger
leaf area and seedling dimension. This information con-
firms the inherent differences in seedling growth and
shade tolerance between the two species, affecting spe-
cies selection for sustainable forest management (Mazis
et al. 2020).
Due to the ongoing global climate change, abiotic

stresses pose a serious threat to forest productivity
worldwide, affecting tree growth and survival. HTP
platform enables the collection of phenotypic traits. It
can promote the successful selection of stress-
resistant genotypes and species effectively, which is
important for early plant selection for forest manage-
ment and tree improvement programs. To make pro-
gress at the rate required by global demand in a
changing climate, traditional phenotyping measure-
ments must evolve to accurately, quickly, and reliably
obtain more scalable measurements with high

resolution. Breeders today have HTP platforms as use-
ful tools for selecting trees with new traits to face in-
creasingly challenging climate. Because forest trees are
sessile and continue to develop over many growing
seasons, mechanisms have evolved that allow trees to
respond to changes in environmental conditions
(Ludovisi et al. 2017). It is now recognized that these
technologies need improvements to face new chal-
lenges, such as predicting complex plant phenotypes
(Varshney et al. 2021) and assessing the impact of cli-
mate change on tree production, and developing new
types and management practices based on underlying
genotype-environment-management interactions. To
face these challenges, breeders will have to adapt, and
a key element in this will be the development of “fu-
ture-proof” trees. These new selections will withstand
future climate conditions and will have to make very
efficient use of scarce resources such as water, and nu-
trients (Hein et al. 2021).

Fig. 5 Schematic diagram shows the importance of phenotyping and genotyping as key players in gene discovery and stress-resistant breeding
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6.3 Pest and disease detection
Plant pest and disease detections quantify the visible
signs or symptoms of stress and its progression on an in-
dividual tree at the leaf, canopy, plot, and stand levels.
Visible symptoms in the foliage of broadleaves and coni-
fers play an important role in detecting and scaling up
the effects. Initial attacks are not visible to the human
eye (Ortiz et al. 2013). Deployment of HTP platforms
and standardization of visual assessments have improved
the accuracy and reliability of stress assessment com-
pared to the traditional labor-intensive manual
measurement.
Automated, high-throughput digital imaging tech-

niques by UAV can be used in phenotypic analysis of
forest diseases and pests to collect data at multiple time
points. Images generated can derive quantitative pheno-
typic data and improve the reproducibility of informa-
tion analysis. The high-resolution hyperspectral imaging
based on UAV has been of high practical value for forest
health management, for instance, indicating a pest out-
break in time (Coops et al. 2010; Nurminen et al. 2015;
Kantola et al. 2010). A processing approach for analyzing
spectral characteristics for high spatial resolution hyper-
spectral image data in a forested environment was devel-
oped to identify damaged trees. The point clouds
measured, using dense image matching, enabled the
classification of trees into healthy, infested, and dead cat-
egories (Näsi et al. 2015).
Forest tree stress phenotyping is essential for selecting

biotic stress-resistant varieties and developing better bi-
otic stress-management strategies. In the future, ground
images will be combined with aerial photos to monitor
forest health status. HTP platform can play an essential
role in integrative resistance breeding through the non-
destructive screening of large numbers of plants for plas-
tic phenotypic responses to biotic stresses.

6.4 Phenological measurement
To evaluate the interaction between vegetation and at-
mospheric processes under rapid climatic change, it is ne-
cessary to accurately detect spatial and temporal
variations in forest tree phenology, such as the time of
flowering, leaf coloring, leaf expansion, and leaf fall. Re-
cent reports suggest the importance of accurately detect-
ing tree phenology’s spatial and temporal variability under
rapid climate change (Mark & Liang, 2013; Richardson
et al. 2013). The main objective for breeders has been to
develop new genotypes with improved desirable traits re-
lated to tree architecture and high yield, which is directly
related to reproduction and flowering. Variability in flow-
ering among individuals directly impacts their fitness, but
how reproductive phenology is affected by the size of the
individuals needs further research (Mauricio et al. 2013).
Long-term continuous phenological observations and

analyses of both individual tree species and the whole can-
opy depend on the HTP platforms.
Although aerial phenotyping platforms with satellite im-

ages permit relatively inexpensive, high-frequency pheno-
logical monitoring over wide areas, images' low resolution
prevents achieving the goal of monitoring individual trees
or species. In addition, the lack of daily-resolution data
prevents capturing important short-term changes such as
reproductive and vegetative flushing. Long-term continu-
ous phenological observations can solve these problems.
An HTP platform with an RGB camera was installed on a
crane's side to capture daily images of the forest canopy to
observe phenology and the result has indicated that the
temporal patterns of red, green, and blue channels ex-
tracted from phenological images can detect trees charac-
teristic (Nagai et al. 2016). HTP platform can also reveal
the year-to-year variability in the timing of flowering, leaf
expansion, and leaf-fall of the whole canopy and individual
trees (Watson et al. 2019; Inoue et al. 2014). An efficient
RGB-UAV-based platform was used to detect the flower-
ing density and blooming periods. This HTP platform
could be adapted to provide critical support to promote
commercially feasible applications of phenological meas-
urement in forestry phenotyping for researchers or breed-
ing and seed orchards. Results showed an individual tree's
flowering and canopy evolution on different dates (Fran-
cisca et al. 2019). The HTP platform was useful for detect-
ing the variability in phenological stages of tree varieties
by mapping and quantifying the height, volume, flowering
dynamics, and flower density of every tree.
Recent studies showed the utility of analyzing tem-

poral patterns based on data extracted from images to
evaluate complicated temporal variations of tree phen-
ology accurately (Geng 2021). These images could even-
tually be analyzed together with the meteorological data,
providing an increasingly useful tool for assessing the
sensitivity of tree phenology to climatic change.
In summary, HTP platforms should be adopted by tree

breeders as a powerful phenotyping tool. The rapid de-
velopment of miniaturized and mobile technologies has
provided economic and powerful sensors for forest tree
phenotyping with high-resolution images. Therefore, af-
fordable and efficient HTP platforms will become the
common choice for tree breeding and seed orchard pro-
grams. As sensors have become lighter and smaller, they
can be integrated with different ground and aerial phe-
notyping platforms, facilitating effective and efficient
phenotyping.

7 Conclusion and perspectives
Conventional breeding has successfully improved various
traits that impact tree growth, such as crown architec-
ture and partial abiotic or biotic stress resistance. Be-
cause of their long generation intervals, large genomes,

Bian et al. Annals of Forest Science           (2022) 79:22 Page 16 of 21



and the lack of well-characterized mutations for reverse-
genetic approaches, the continued improvement of forest
trees is slow. Nevertheless, breeding possibilities have
been broadened by forest tree phenotyping.
For tree breeding and forestry management, phenotypic

analysis is the key to understanding gene function and en-
vironmental effects. Phenotyping a tree’s traits could iden-
tify better-growing plants, so breeders select superior
genotypes and analyze the impact of environment and
silviculture. Geneticists will need to work more closely
with physiologists, ecologists, and engineers to develop in-
formative, precise, and standardized HTP technologies.
Phenotyping facilities actively contribute to the gener-

ation of high-dimensional, richly informative datasets on
trees. Here, we reviewed recent advances in sensors and
HTP platforms applied in forestry, emphasizing the chal-
lenge connected with phenotyping systems and the ap-
plication of HTP platforms. With the support of
phenotyping platforms, we can guide germplasm selec-
tion at the early stage of breeding, evaluate field per-
formance, and detect the occurrence of stresses.
Prediction (before selection) of phenotype at the older
stage with image analysis at the juvenile stage is needed
in advanced breeding programs. Therefore, the high-
throughput phenotypic assay can accelerate the breeding
process and provide important support data for resource
regulation and management decision-making in preci-
sion forestry. Besides the acceleration, these images
could give access to new phenotypes that were not ac-
cessible until now at the breeding level, i.e., for a large
number of trees (ecophysiological traits for example).
To build an efficient integrated forest tree phenotyping

community, multidisciplinary collaborations between forest
geneticists and engineers /technology providers are needed.
Ongoing efforts are required in the development and appli-
cation of high throughput phenotyping technology to com-
bine with genome-wide selection (WS), quantitative trait
loci (QTL), and genome-wide association study (GWAS) to
identify the function of causal genes. HTP will also be pro-
posed as a tool to indirectly capture endophenotypic variants
and compute relationship matrices for predicting complex
traits and give rise to this new approach of "phenomic selec-
tion" (Rincent et al. 2018). As new and improved sensors are
developed, HTP platforms with high-resolution, high-
accuracy, and affordable prices will accelerate tree breeding.
In the future, phenotyping these complex traits will require
sensor advancement, high-quality imagery combined with
deep learning methods, and efforts in transdisciplinary sci-
ence to foster integration across disciplines.
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