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Abstract 

Key message  The non-linear seemingly unrelated regression mixed-effects model (NSURMEM) and generalized addi-
tive model (GAM) were applied for the first time in crown width (CW) additive models of larch (Larix gmelinii Rupr.), 
birch (Betula platyphylla Suk.), and poplar (Populus davidiana Dode). The crown radii in four directions (CR) exhibited 
different growth trends and responded differently to tree size and competition variables. In the absence of calibration, 
GAM was more accurate than NSURMEM for CR and CW predictions.

Context  Crown radii in four directions (CR) and crown width (CW) are fundamental indicators used to describe tree 
crowns. The complexity of the CR growth in four directions of different tree species in natural forests is often ignored. 
There is logical additivity among CR and CW that is also often overlooked. Furthermore, the existing methods applied 
to CW additive models have some drawbacks.

Aims  We aim to: (i) evaluate the utility of two new methods in developing CW additive models for larch (Larix gmelinii 
Rupr.), birch (Betula platyphylla Suk.), and poplar (Populus davidiana Dode) in natural secondary forests of Northeastern 
China; and (ii) explore the growth patterns of CR in four directions to gain important ecological insights.

Methods  The non-linear seemingly unrelated regression mixed-effects model (NSURMEM) and generalized additive 
model (GAM) were used to develop CW additive models and to explore crown growth patterns. The predictive ability 
of the additive models was evaluated using leave-one-plot-out cross-validation (LOOCV).

Results  At a fair level without calibration, GAM provided slightly better results than NSURMEM. The response of the 
four CR to tree size and competition variables is different and may be non-uniform due to complex stand conditions 
and tree growth strategies.

Conclusion  The newly provided methods applied to additive models are available for external datasets. GAM is 
recommended in the absence of calibration. This study has important implications for the understanding of natural 
forest dynamics and decision-making for critical stand management.
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1  Introduction
Crown radii (CR) are basic and essential variables in for-
estry surveys, which are usually measured in four direc-
tions, i.e., eastern crown radius (CRE), southern crown 
radius (CRS), western crown radius (CRW), and north-
ern crown radius (CRN) (Bragg 2001). Tree distribution 
is often stochastic in heterogeneous stands, which results 
in individual trees being subject to irregular prevailing 
winds, directional solar radiation, and competition from 
neighboring trees (Grote 2003; Kong et  al. 2021). The 
plasticity and phototropism of the crown allow for opti-
mal canopy filling by growing into vacant growth spaces 
(Jucker et al. 2015; Krůček et al. 2019; Longuetaud et al. 
2013). Therefore, the four CR usually possess different 
growth and development characteristics that tend to 
form asymmetrical or irregular crowns (Fu et al. 2017b; 
Kong et al. 2021; Thorpe et al. 2010). The understanding 
of the growth characteristics of the CR in four directions 
is critical for assessing the health and competitiveness of 
trees (Thorpe et  al. 2010), simulating canopy cover and 
radiative transfer (Cescatti 1997; Gill et  al. 2000), and 
understanding the susceptibility of trees to windthrow 
(Skatter and Kucera 2000). However, most of the devel-
oped models related to the crown still assumed consist-
ent developmental trends in all directions of the crown, 
leading to identical models being used to simulate crown 
properties in all directions (Fu et  al. 2017b; Fu et  al. 
2017c; Gao et al. 2021; Lei et al. 2018).

Crown width (CW) is also an important variable that 
has great value for research areas such as tree condition 
assessment (Zarnoch et  al. 2004), stand model simula-
tion (Jucker et al. 2017), and forest management (Hemery 
et al. 2005). CW is usually obtained from the four CR, i.e., 
CW = (CRE + CRS + CRW + CRN)/2 (Fu et al. 2013). 
Therefore, logical additivity exists among the four CR 
and CW (Fu et al. 2017c; Lei et al. 2018). Several param-
eter estimation methods of CR or CW models have been 
used in the literature, including ordinary non-linear least 
squares (ONLS) and non-linear mixed-effects mod-
els (NMEM) (Chen et  al. 2021; Fu et  al. 2017a; Sharma 
et  al. 2016; Sharma et  al. 2017; Yang and Huang 2017). 
However, these estimation methods ignore the logical 
additivity of the four CR and CW, results in statistically 
inefficient and inconsistent results (half of the sum of the 
predicted values of the four CR models is not equal to the 
predicted values of the CW model) (Fu et al. 2017c; Lei 
et al. 2018). In addition, ONLS violates the assumption of 
independent errors, leading to invalid hypothesis testing 
(Sharma et al. 2017).

The CW additive models can predict CW and the 
four CR simultaneously, ensuring their logical additivity 
(Fu et al. 2017c; Lei et al. 2018). Typically, CW additive 
models can be developed in two forms: (i) 4 + 1 (four CR 

and one CW) models; and (ii) four CR models, and then 
calculate the predicted values of CW using the predicted 
values of the four CR models. The latter form eliminates 
the parameter constraints in the model structure and is 
shown to yield better predictive performance (Xie et  al. 
2022; Zhao et al. 2019). The main estimation methods for 
CW additive models include non-linear seemingly unre-
lated regression (NSUR) and two-stage error-in-variable 
model (TSEM). NSUR and TSEM have been shown to 
perform slightly better compared to traditional methods 
(Lei et  al. 2018). However, the use of NSUR and TSEM 
estimation still has drawbacks, such as ignoring the hier-
archical nested structure of crown data, violates the inde-
pendence assumption of observation errors (Raptis et al. 
2018; West et al. 1984).

Non-linear seemingly unrelated mixed-effects model 
(NSURMEM) should be an appropriate solution to 
ensure both the additivity of CR and CW and to analyse 
the hierarchical structured data (Mehtätalo and Lappi 
2020). NSURMEM is a flexible method for jointly mod-
eling different dependent variables by imposing a joint 
multivariate distribution on the random effects (Fieuws 
and Verbeke 2006). NSURMEM is suitable for a variety 
of situations and is currently used in the medical field in 
both longitudinal and non-longitudinal environments 
(Hamza et al. 2009; Schluchter and Piccorelli 2019) but is 
not widely used in forestry (Mehtätalo and Lappi 2020). 
NSURMEM may provide a more flexible random effects 
calibration through sub-model correlations (Mehtätalo 
and Lappi 2020). However, supplementary data is often 
not readily available and is prone to high costs, espe-
cially in the case of large-scale forest surveys (Calama 
and Montero 2004). In addition, the prediction accuracy 
depends on the amount and properties of the supplemen-
tary data (Calama and Montero 2004; Chen et al. 2021). 
Bias in the supplementary data may result in lower accu-
racy of the calibration than predicted using only fixed-
effects parameters (mean response) (Westfall and Scott 
2010). Therefore, it may be sensible to fit and predict 
using only the fixed-effects parameters of NSURMEM 
(He et al. 2021).

Advances in the modeling approach have allowed us 
to evolve from parametric models to non-parametric or 
semi-parametric models in forest inventory, which are 
notable for being data-driven rather than model-driven 
and having no strict assumptions (Albert and Schmidt 
2010; Byun et  al. 2013; Frescino et  al. 2001; Hastie and 
Tibshirani 1990; Zhang and Gove 2005). As a semi-par-
ametric model, the generalized additive model (GAM) 
(Hasenauer 1997) uses a link function to establish the 
relationship between the mean of the response variable 
and the smoothing functions of the explanatory variables. 
GAM has relaxed assumptions, with the only underlying 
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assumptions being that the functions are additive and 
that the explanatory variables are smoothed (Guisan et al. 
2002; Wood 2017). GAM avoids problems such as model 
form filtering of parametric models, making it one of the 
most innovative and successful techniques in many for-
estry studies (Adamec and Drápela 2016; Fichtner et  al. 
2013; Guisan et  al. 2002; He et  al. 2021; Moisen et  al. 
2006; Robinson et al. 2011; Wang et al. 2005; Zang et al. 
2016). Further, GAM could handle highly non-linear 
and non-monotonic relationships between response and 
explanatory variables by quantifying partial effects, con-
tributing to deeper insights into the complexity of forest 
stands (Albert and Schmidt 2010; Schmidt et  al. 2011; 
Wernicke et  al. 2020). However, to our knowledge, no 
previous studies have applied GAM to CR or CW mod-
eling. In addition, given the compelling features of GAM 
and the desirable additivity characteristics among CR 
and CW, we considered whether GAM could be applied 
to the CW additive models to provide high statistical effi-
ciency with proper interpretation of additivity.

Larch (Larix gmelinii Rupr.), birch (Betula platyphylla 
Suk.), and poplar (Populus davidiana Dode) are impor-
tant tree species in natural secondary forests in North-
eastern China, providing essential regional and national 
benefits related to economic timber, carbon storage, 
biodiversity, and other ecosystem services (Dong et  al. 
2019). Therefore, the objectives of this study were to: (i) 
develop CW additive models for larch, birch, and poplar 
using two new methods, NSURMEM and GAM. In this 
process, each of the four CR was tested for appropriate 
basic models and covariates to accurately understand the 
growth and response to covariates of the four CR; and (ii) 
gain insight and evaluate the strengths and weaknesses 
of NSURMEM and GAM in application to CW addictive 
models. For a fair comparison, neither of the two additive 
models considered calibration. In addition, we did not 
perform statistical comparisons with traditional models 
such as ONLS and NMEM because the aim of this study 
was to develop new methods that are more consistent 
with the characteristics and statistical assumptions of the 
crown data. NSURMEM and GAM are expected to be 
widely applicable to other species and forest types in CW 
additive models.

2 � Material and methods
2.1 � Research area and data collection
Our study area is located in the Daxing’an Moun-
tains Forest region in Northeastern China, which 
is the forest ecological function zone and wood 
resource reserve base with the largest area, high-
est latitude, and foremost ecological status. Data for 
this study were collected from 10 forest farms of Xin-
lin (123°41′E–125°25′E, 51°21′N–52°10′N), Songling 

(123°29′E–125°11′E, 50°9′N–51°23′N), and Huzhong 
(122°39′E–124°20’E, 51°14′N–52°25′N) Forestry 
Bureaus in Daxing’an Mountains during 2012–2014 
and 2017–2018 without repeated measurements. The 
research areas belong to the continental monsoon cli-
mate zone in the cold temperate zone. For the Xinlin 
Forestry Bureau, the extreme temperature range is 
– 47 °C to + 36 °C, the annual average temperature is 
− 3 °C, the annual precipitation is 550.7 mm, and the 
frost-free period is 80–100 days. For Songling Forestry 
Bureau, the extreme temperature range is – 48 °C to 
+ 30 °C, the annual average temperature is – 3 °C, the 
annual average precipitation is 600 mm, and the annual 
frost-free period is 100–110 days. For the Huzhong 
Forestry Bureau, the extreme temperature range is – 52 
°C to + 32 °C, the annual average temperature is − 4.3 
°C, the average annual precipitation is 497.7 mm, and 
the annual frost-free period is 87 days. The presence of 
low temperatures and frozen soil significantly affects 
soil formation in the three Forestry Bureaus.

A total of 121 temporary plots were set up in natural 
secondary stands that were regenerated naturally with-
out human intervention. The plots were set up by strati-
fied sampling according to site type and dominant tree 
species. The accessibility of the plots due to topography, 
terrain, rivers, and water areas was also considered. The 
plots ranged in area from 400 to 3600 m2 and covered 
a wide range of growing conditions as reflected by the 
various slopes, aspects, and elevation differences. In 
addition to the three main tree species mentioned above, 
there are also a small number of other accompanying 
tree species such as Betula davurica Pall., Quercus mon-
golica Fisch. ex Ledeb, etc. Hence, only larch, birch, and 
poplar were included in the detailed analysis, while other 
tree species cooperated with the calculation of stand-
level variables (Thorpe et  al. 2010). The data of larch 
and birch were measured from the Xinlin, Songling, and 
Huzhong Forestry Bureaus, while for poplar, only the 
Xinlin and Songling Forestry Bureaus. The prior statisti-
cal test (ANOVA) confirmed that there were no signifi-
cant differences between geographic regions of the CR 
of the three species; hence, the source of the sampled 
trees was ignored for data analysis and model develop-
ment (Dong et al. 2014).

In each sample plot, all living trees without top damage 
and extremely lopsided crown were measured, including 
over-bark diameter at breast height (DBH, 1.3 m above 
ground), total height (THT), and height to crown base 
(HCB). CR was measured as the maximum horizontal 
distance from the center of the trunk to the crown in 
four vertical directions. CW was calculated as the arith-
metic mean of the two crown diameters obtained from 
the four CR (Fu et  al. 2013). Differences in measuring 
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instruments, technicians, and stand slopes may lead 
to extreme data points. To detect possible outliers and 
improve processing efficiency, a method like the abnor-
mal data detection system proposed by Bi (2000) was 
used with smoothing parameters of 0.5 for the CR data. 
The detected extreme points were finally excluded from 
the original database (24, 29, and 2 trees for larch, birch, 
and poplar, respectively). The total numbers of larch, 
birch, and poplar left in the dataset were 11216, 4863, 
and 1039, respectively. Scatter plots and marginal histo-
grams of CW and DBH for larch, birch, and poplar are 
shown in Fig. 1.

2.2 � Preparation before modeling
In the first place, we considered whether a generic model 
could be developed for the four CR of each species as in 
other studies (Fu et  al. 2017b; Fu et  al. 2017c; Lei et  al. 
2018). However, we believe that various tree species or 
even directions of CR may have diverse growth trends, 
especially in natural forests. To prove this hypothesis, we 
randomly selected three plots to map the relative posi-
tions of trees and the size of CW in the plots (Fig.  2a). 
The distributions of trees in the plots were scattered and 
random. The ideal situation of uniform growth of the CR 
may be difficult to achieve and does not correspond to 
biological realism.

In addition, we calculated the crown asymmetry indices 
(Eq. 1) of the trees in the three plots (Kong et al. 2021).

where Np is the number of paired CR measurements, 
←−
Ri  and 

−→
Ri represent the ith pair of CR measured on two 

opposite sides of the crown. CAI = 0 indicates perfect 
symmetry and CAI = 1 indicates extreme asymmetry. 

(1)CAI =
1

Np

Np

i=1

←−
R i −

−→
R i

←−
R i +

−→
R i

The frequency distributions of crown asymmetry indices 
of trees in the three plots are shown in Fig. 2b. We found 
that most of the trees showed varying degrees of crown 
asymmetry.

Furthermore, we calculated the Pearson correlation 
coefficients of the four CR with some important vari-
ables using the whole data. The radar plots (Fig. 3) show 
that for all species, the four CR have differential correla-
tion coefficients for the same variables. For example, for 
larch, the correlation coefficients of CRE, CRS, CRW, and 
CRN with DBH were 0.55, 0.56, 0.55, and  0.54, respec-
tively; and with THT were 0.41, 0.42, 0.38, and 0.39, 
respectively.

In view of the above, we decided to develop separate 
models for each CR of each tree species. Although devel-
oping models separately may reduce the predictive and 
application ability of the additive models, it will be more 
consistent with the natural law that tree crown growth 
may be asymmetric in heterogeneous stands. In addition, 
separate modeling would provide a more rigorous and 
robust account of the relationship among CR and factors 
such as tree size and competition.

2.3 � Selection of basic models
Given that the non-linear model form is theoretically 
more biologically logical and appears to yield more reli-
able extrapolation results (Gill et al. 2000), a total of eight 
popular non-linear models were selected as candidate 
basic models (Table  1). With the assumption of inde-
pendent observations, the entire data for CR of larch, 
birch, and poplar were fitted separately using ONLS to 
determine the most appropriate basic models based on 
mean error (ME, Eq.  4) and root mean squared error 
(RMSE, Eq. 5) (Bronisz and Mehtätalo 2020a; Temesgen 
et al. 2008). Four main criteria were used to select basic 

Fig. 1  Scatter plots and marginal histograms of CW and DBH for a larch, b birch, and c poplar
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models for each species: easy convergence, lower ME and 
RMSE, general applicability, and biological realism.

2.4 � Addition of covariates
Accurate quantification of factors influencing CR 
not only allows for the development of generalized 
models with broader geographic applicability and 
higher predictive accuracy, but also provides insight 
into crown growth patterns in stands. Several land-
mark studies have observed that crown growth is 
closely related to biotic factors such as tree size 
(Raptis et  al. 2018; Russell and Weiskittel 2011) and 
competition (Sharma et al. 2016; Sharma et al. 2017), 
as well as abiotic factors such as site conditions (Fu 
et  al. 2013) and topography (Bechtold 2004). Given 
the objectives of this study, two types of covariates 
that are convenient to calculate and apply, including 
tree size and competition, were tested to capture the 
variability of CR among stands and optimize models 
(Hasenauer et  al. 1998; Qin et  al. 2022). Site quality 
variables were not considered in this study because 
they are more applicable to pure even-aged forests 
rather than mixed-uneven aged forests (Huang and 
Titus 1993). The covariates associated with tree size 
were DBH, THT, HCB, and the THT-to-DBH ratio 

(HDR) which represents the stability of the trees 
(Zhang et al. 2020). Variables describing competition 
incorporated quadratic mean diameter (QMD), DBH-
to-QMD ratio (DQR), basal area (BA), the basal area 
proportion of target species (BApor), the basal area 
of trees larger than the subject tree (BAL), and stem 
numbers (N). Detailed summary statistics are shown 
in Table  2. All variables and their transformations, 
including square, natural logarithm, root, and power 
forms, were examined for their role in improving the 
CR equations.

Several approaches have been successfully employed 
for adding covariates to forest models, including step-
wise regression (Bechtold 2004), principal compo-
nent analysis (Lei et  al. 2016), two-stage approach, etc. 
(Calama and Montero 2004). The two-stage approach 
has been competently utilized in recent years and has 
proven to be reliable since it is biologically more relevant 
and interpretable than other methods (Chen et al. 2021; 
Sharma et  al. 2016). Therefore, the two-stage approach 
was used in this study to incorporate different high-
contribution covariables into the optimal basic models 
of each CR for each tree species. The specific processes 
were (i) fitting basic models to the data of each plot 
using the nlsList function in R software (Pinheiro and 

Fig. 2  a Relative positions of trees in the three plots, with the size of the circles representing CW; and b frequency distributions of crown 
asymmetry indices of trees in the three plots
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Fig. 3  Radar plots of Pearson correlation coefficients between CR and A DBH, B THT, C HCB, D BA, and E BAL for a) larch, b) birch, and c) poplar
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Bates 2006); and (ii) examining the relationship between 
the model coefficients and each potential covariable as 
well as its transformations by graphical and correlation 
analysis. Each pre-selected combination of variables was 
tested for multicollinearity based on a variance inflation 
factor (VIF), and covariates were removed using a VIF = 
5 decision threshold. The maximum number of covari-
ates for each CR equation was set to 2 to avoid prob-
lems such as over-parameterization, poor convergence, 
and slow computational speed of parameter estimation 
(Wang et al. 2021).

2.5 � Non‑linear seemingly unrelated mixed‑effects model 
(NSURMEM)

After determining the generalized models of each CR for 
larch, birch, and poplar, the next step was the development 
of NSURMEM. Notice that the above covariable selec-
tion process was based on ONLS fitting, and significant 
variables may be insignificant due to the inherent correla-
tion and random parameters in NSURMEM fitting, which 
should be deleted in this case. The structural formulation 
of m contemporaneously correlated non-linear equations 
could be specified as (Mehtätalo and Lappi 2020):

Table 1  Candidate basic models analyzed for the CR of larch, birch, and poplar

Note: CR = Crown radii including CRE (eastern crown radius), CRS (southern crown radius), CRW (western crown radius), and CRN (northern crown radius) for larch, 
birch, and poplar, DBH = over-bark diameter at breast height, β1, β2, and β3 are model parameters

Model 
number

Model Function form Literature

1 CR = β1 + β2DBH + β3DBH2 Quadratic Gill et al. (2000); Sánchez-González et al. (2007); Sönmez (2009)

2 CR = β1DBH
β2 Power Sánchez-González et al. (2007); Sönmez (2009); Sharma et al. (2016); Sharma et al. (2017); Yang 

and Huang (2017); Raptis et al. (2018)

3 CR = β1(1 − exp(−β2DBH)) Monomolecular Sánchez-González et al. (2007); Raptis et al. (2018)

4
CR =

(

DBH
β1+β2DBH

)2 Hossfeld 1 Sánchez-González et al. (2007)

5 CR = β1β2
DBH Compund Sönmez (2009)

6 CR = exp(β1 + β2DBH) Growth Sönmez (2009)

7 CR = β1 exp(β2DBH) Exponential Sönmez (2009); Yang and Huang (2017)

8 CR =
β1

1+β2 exp (−β3DBH)
Logistic Fu et al. (2013); Fu et al. (2017a) Fu et al. (2017b); Fu et al. (2017c); Lei et al. (2018); Chen et al. 

(2021)

Table 2  Descriptive statistics of the tree size and competition variables of larch, birch, and poplar

Note: CRE = east crown radius, CRS = south crown radius, CRW = west crown radius, CRN = north crown radius, CW = crown width, DBH = over-bark diameter at 
breast height,  THT = total height, HCB = height to crown base, HDR = THT-to-DBH ratio, QMD = quadratic mean diameter, DQR = DBH-to-QMD ratio, BA = basal 
area, BApor = basal area proportion of target species, BAL = the basal area of trees larger than the subject tree, N = stem numbers, Min = minimum value, Max 
= maximum value, Mean = average value, and SDV = standard deviation

Classification Variable Larch (n = 11216) Birch (n = 4863) Poplar (n = 1039)

Min Max Mean SDV Min Max Mean SDV Min Max Mean SDV

Tree size CRE (m) 0.1 7.9 1.4 0.6 0.1 5.1 1.3 0.6 0.1 4.5 1.4 0.6

CRS (m) 0.1 6.0 1.4 0.6 0.1 5.5 1.4 0.6 0.2 5.1 1.6 0.6

CRW (m) 0.1 5.1 1.3 0.6 0.1 4.9 1.3 0.6 0.2 5.3 1.5 0.7

CRN (m) 0.1 6.3 1.3 0.6 0.1 5.5 1.3 0.6 0.1 4.5 1.4 0.6

CW (m) 0.45 10.95 2.72 0.96 0.45 9.95 2.65 0.90 0.80 8.45 2.92 0.90

DBH (cm) 5.0 42.2 11.7 5.2 5.0 38.6 11.0 4.8 5.1 38.7 14.1 6.2

THT (m) 3.4 28.3 12.0 3.7 4.1 30.7 12.8 3.5 3.4 31.6 15.1 4.8

HCB (m) 0.4 18.7 6.5 2.8 0.2 17.0 6.8 2.1 1.4 22.1 8.9 3.6

HDR (m cm−1) 0.28 3.28 1.10 0.28 0.28 3.17 1.25 0.32 0.38 3.25 1.15 0.29

Competition QMD (cm) 8.1 26.3 12.4 2.4 8.1 26.3 12.1 3.0 8.5 22.7 13.3 3.9

DQR 0.28 3.22 0.94 0.36 0.25 3.08 0.91 0.33 0.32 3.32 1.06 0.37

BA (m2 ha−1) 5.1 38.0 20.4 6.4 5.1 38.0 19.0 4.4 9.4 38.0 20.7 5.8

BApor (m2 ha−1) 0.004 1 0.76 0.21 0.005 0.93 0.44 0.23 0.005 0.87 0.27 0.18

BAL (m2) 0 5.20 1.45 0.91 0 5.21 1.47 0.90 0 5.07 1.61 1.19

N (trees ha−1) 325 3320 1772 635 325 3320 1801 598 475 2916 1642 565
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where y(M)
i  is the response variable vector (M = 1, 2, 

…m), fM(⋅) are non-linear functions of the predictor vari-
able matrix xM, βM is the fixed parameter vector common 
to all subjects, b(M)

i ∼ MVN(0,D) where D is the stacked 
covariance matrix of the random parameter vector b(M)

i  . 
ε
(M)
i ∼ MVN(0,Ri) with Ri = I ⊗ Σ where ⊗ is the Kro-

necker product, Σ is the stacked variance-covariance 
matrix of m response variables conditional on b(M)

i .
Theoretically, NSURMEM could be extended by non-

linear mixed-effects models for joint modeling. However, 
convergence problems often arise for high-dimensional 
calculations (Mehtätalo and Lappi 2020). Therefore, we 
used the solution proposed by Fieuws and Verbeke (2006) 
to fit the P = m(m – 1)/2 pairs of bivariate models instead 
of the full multivariate model (m = 4, P = 6 in this study). 
In a maximum likelihood framework, each pairwise 
model produces estimates with classical optimal asymp-
totic properties, including consistency and asymptotic 
normality. The fitted pairwise models were averaged over 
the obtained unbiased estimates to generate the final esti-
mates (Fieuws and Verbeke 2006; Mehtätalo and Lappi 
2020). All pairwise models were jointly fitted to the data 
for each tree species through the SAS/ETS NLMIXED 
Procedure (SAS Institute, Inc. 2011).

2.6 � Generalized additive model (GAM)
GAM (Hastie and Tibshirani 1990) is specified only on 
the basis of smoothing functions rather than detailed 
parameter relationships, allowing flexibility in specify-
ing the dependence of the response on covariates (Wood 
2017). Generally, the structure of the GAM could be 
expressed as (Guisan et al. 2002):

where g(⋅) is an invertible link function, µi is the expected 
value of the response variable yi, Ai is the design matrix 
for any strictly parametric model component, θ is the 
corresponding parameter vector, fj(⋅) are smooth func-
tions of the covariates xki. None of the interaction terms 
were considered in the model since the preliminary 
results showed no significant improvement.

Variable selection for GAM could be performed using 
either predefined rules including bias reduction meas-
ured by the χ2 statistic, and methods to minimize AIC; 
or more automatic procedures including stepwise 
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regression, and shrinkage rules such as ridge regression 
or lasso (Wang et  al. 2006). However, the model com-
parison is valid only when the models have the same 
covariables (Dong et  al. 2014). Hence, the independent 
variables of GAM were consistent with the variables used 
in NSURMEM of each CR. After determining the model 
forms for all CR of each tree species, the CW model was 
defined as half of the sum of the GAM for the separately 
calculated CR.

The GAM was estimated by gamm function via pack-
age mgcv in the R-library, which allows access to a wide 
range of random effects and correlation structures 
(Wood 2004). Despite various smoothing functions 
or combinations thereof that could be used in GAM, 
we used the default thin plate regression splines (TP) 
for all model covariates as it provided more stable and 
excellent results for CR of all tree species after exten-
sive testing. It is reassuring to attribute that it would be 
unfortunate if the model relied heavily on details such as 
the precise choice of basis (Wood 2017). For details on 
smooth splines see Wood (2017).

2.7 � Model evaluation
Since independent data sets were not available, a 
method named leave-one-plot-out cross-validation 
(LOOCV) was used to measure the predictive per-
formance of additive models (Yang and Huang 2014). 
NSURMEM was not calibrated for a fair comparison 
with GAM. For the sake of brevity, the LOOCV process 
was not described in detail in this paper. Various statis-
tics were used for model fitting and validation, which 
were calculated as follows:

where yi and ŷi are observed and predicted values of CR 
or CW for the ith observation; y is the average of yi; n 
is the total number of observations. ME is mean error; 
RMSE is the root mean squared error; MAE is mean 
absolute error; and FI is the fit index. ME and MAE deal 
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with ‘bias’ or ‘accuracy’, while RMSE and FI deal with the 
“precision” of estimates (Amaro et al. 2003). For a more 
intuitive understanding of the accuracy of the corre-
sponding two methods, the following FI% was also cal-
culated, representing the percentage increase in FI due to 
GAM estimation compared to NSURMEM.

3 � Results
3.1 � Determination of basic models
An overall summary of the comparison of candidate 
basic models is given in Table  3. As expected, the eight 
candidate models yielded different applicability for CR 
of various tree species or even various directions of the 
same tree species. For all CR of larch and birch, Model 
8 provided the smallest ME and RMSE. Yet for poplar, 
model 4, model 8, model 2, and model 4 were consid-
ered the optimal basic models based on a combination 
of easy convergence, smallest ME and RMSE, general 

(8)
FI% = (FIGAM−FINSURMEM)/FINSURMEM × 100%

applicability, and biological realism. These basic models 
have previously been widely applied to several CW mod-
els and additive models (cf. Table 1).

3.2 � NSURMEM
The preliminary assessment of the two-stage approach 
showed that tree size and competition variables includ-
ing HCB, BA, THT, and BAL, rather than their trans-
formed forms, contributed more to the CR of the three 
tree species. The best-performing generalized CR equa-
tions composed the NSURMEM for three species. The 
random parameters were determined by comparing 
the model performance for different combinations of 
parameters. The NSURMEM of birch only contained 
the size variables because the competition (BA and 
QMD, not shown) became insignificant with the addi-
tion of the random parameters. Eventually, the NSUR-
MEM of larch (Eq. 9), birch (Eq. 10), and poplar (Eq. 11) 
held cross-equation correlations of the following 
detailed forms:

Table 3  Fit statistics of the candidate basic models for CR of larch, birch, and poplar

Note: The bolded numbers indicate the best performance for each case of the candidate basic models

*The non-significant parameters according to the approximate t-statistic generated by the corresponding model, P = 0.05

Species Model
number

CRE CRS CRW​ CRN

ME RMSE ME RMSE ME RMSE ME RMSE

Larch 1 0.0000* 0.5133* 0.0000 0.5082 0.0000 0.4916 0.0000 0.5073

2 0.0015 0.5152 0.0018 0.5108 0.0020 0.4953 0.0019 0.5108

3 0.0091 0.5215 0.0103 0.5181 0.0105 0.5036 0.0102 0.5187

4 0.0047 0.5233 0.0052 0.5203 0.0049 0.5052 0.0048 0.5201

5 − 0.0022 0.5163 − 0.0023 0.5112 − 0.0015 0.4929 − 0.0014 0.5086

6 − 0.0022 0.5163 − 0.0023 0.5112 − 0.0015 0.4929 − 0.0014 0.5086

7 − 0.0022 0.5163 − 0.0023 0.5112 − 0.0015 0.4929 − 0.0014 0.5086

8 − 0.0001 0.5134 0.0001 0.5080 0.0000 0.4915 0.0000 0.5073
Birch 1 0.0000 0.5610 0.0000* 0.5385* 0.0000* 0.5060* 0.0000* 0.4927*

2 0.0005 0.5614 0.0010 0.5393 0.0006 0.5065 0.0009 0.4937

3 0.0063 0.5649 0.0077 0.5445 0.0056 0.5112 0.0068 0.4990

4 0.0034 0.5659 0.0041 0.5460 0.0024 0.5111 0.0031 0.4995

5 − 0.0027 0.5666 − 0.0025 0.5427 − 0.0015 0.5085 − 0.0016 0.4952

6 − 0.0027 0.5666 − 0.0025* 0.5427* − 0.0015 0.5085 − 0.0016 0.4952

7 − 0.0027 0.5666 − 0.0025 0.5427 − 0.0015 0.5085 − 0.0016 0.4952

8 0.0002 0.5606 − 0.0002 0.5387 − 0.0002 0.5063 − 0.0001 0.4928
Poplar 1 0.0000 0.5605 0.0000* 0.5359* 0.0000* 0.5531* 0.0000 0.5293

2 − 0.0005 0.5599 0.0009 0.5369 0.0004 0.5532 − 0.0007 0.5284

3 − 0.0003 0.5579 0.0073 0.5431 0.0058 0.5557 0.0011 0.5285

4 − 0.0004 0.5578 0.0037 0.5437 0.0046 0.5579 0.0003 0.5278
5 − 0.0006 0.5646 − 0.0012 0.5376 − 0.0032 0.5600 − 0.0016 0.5356

6 − 0.0006* 0.5646* − 0.0012* 0.5376* − 0.0032 0.5600 − 0.0016 0.5356

7 − 0.0006 0.5646 − 0.0012 0.5376 − 0.0032 0.5600 − 0.0016 0.5356

8 − 0.0001 0.5581 − 0.0004 0.5364 − 0.0003 0.5534 − 0.0006 0.5296
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The CW predictions for the three tree species were 
derived from the CR predictions:

where CREij, CRSij, CRW​ij, CRNij, CWij, DBHij, HCBij, 
BALij, and THTij are the CRE, CRS, CRW, CRN, DBH, 
HCB, BAL, and THT for tree j in plot i; BAi is the BA for 
plot i; β1•, β2•, β3•, β4•, and β5• are fixed parameters for 
each CR of the three tree species; b• are random param-
eters for four CR; ε• are the model error terms. The scatter 
plots of the CR versus covariates in the final NSURMEM 
are shown in Appendix: Fig. 9.
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Tables  4 and 5 report the estimated fixed parame-
ters and random effects variance-covariance matrix of 
NSURMEM, respectively. All the fixed parameters were 
statistically significant at P = 0.05 with negative or pos-
itive biological significance.

For greater clarity, the contribution of each covariate to 
the variations of each CR for three species is illustrated in 
Fig. 4, showing the varying degrees of variation in the CR 
equations across the three species. All CR of all tree spe-
cies increased with increasing DBH and decreased with 
increasing HCB, BA, THT, and BAL.

3.3 � GAM
The detailed forms of the final GAM for each species, 
which include covariables consistent with the correspond-
ing NSURMEM, are shown in Table 6.

The estimated coefficients and statistical character-
istics of GAM are given in Table 7. All non-linear rela-
tionships between covariables and response variables 

Table 4  Fixed parameter estimates of NSURMEM systems for larch, birch, and poplar

Note: All the fixed parameters are statistically significant at P = 0.05

Species CR β1• β2• β3• β4• β5•

Larch CRE 3.8037 3.8883 0.0998 0.1889 − 0.0006

CRS 3.2882 3.0203 0.1225 0.2527 − 0.0009

CRW​ 3.6294 3.3858 0.0867 0.2169

CRN 3.4222 3.3558 0.1007 0.1783 − 0.0005

Birch CRE 2.6272 2.1502 0.1156 0.2105

CRS 3.0998 2.1666 0.1022 0.2635

CRW​ 2.5994 1.7896 0.1009 0.2193

CRN 3.3363 3.4137 0.0806 0.1289

CRE 3.4938 0.3981 0.0089

Poplar CRS 4.4542 4.8763 0.0714

CRW​ 0.2443 0.7746 − 0.003

CRN 3.2133 0.4691 0.0091 0.0211
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were biologically plausible and significant at P = 0.05. 
The partial residual plots are shown in Fig.  5. Similar 
conclusions to the NSURMEM could be drawn from 
the trends in partial residual plots of GAM. All CR of all 
tree species increased with increasing DBH. The CR of 
larch and birch decreased with increasing HCB except 
for the CRE of birch, which showed a trend of first 
decreasing and then slightly increasing (b2 in Fig. 5). For 
poplar, the CRW and CRN responses to tree size and 

competition were consistent with those reported by the 
NSURMEM. Yet differences still existed in NSURMEM 
and GAM, such as all CR of larch and birch, and CRE 
of poplar showed non-monotonic trends in response to 
competition variables.

3.4 � Intraspecific and interspecific variability of crown
NSURMEM and GAM were used to simulate the relation-
ship among the predicted CR and CW against DBH (cf. 

Table 5  Random effects variance-covariance matrix of NSURMEM systems

Random
effects

Larch Birch Poplar

bE bS bW bN bE bS bW bN bE bS bW bN

bE 0.0003 0.0068 0.0002 0.0059 0.2513 0.1980 0.0276 − 0.3361 1.2032 − 0.4525 − 0.0027 0.0348

bS 0.1922 0.0054 0.1447 0.2503 0.1092 − 0.3587 0.3334 0.0118 − 0.0134

bW 0.0002 0.0060 0.1454 − 0.2642 0.0011 − 0.0012

bN 0.1902 1.0517 0.0018

Fig. 4  Contribution of different covariates including tree size (HCB and THT) and competition (BA and BAL) to CR for larch, birch, and poplar. The 
curves were generated by using the average values of the covariates in Table 2, the parameters of NSURMEM systems in Table 4, and the equal 
intervals of the test covariates from the minimum to the maximum range
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Fig. 6). The fitted curves of the two additive models com-
bined showed that the four CR of larch were quite simi-
lar. For birch, CRS was significantly larger than the other 
three directions in terms of DBH from small to large. 
As for poplar, the growth trends of CRS and CRW were 
similar. As DBH increased, the CRE and CRN were sig-
nificantly shorter than the other two directions. In gen-
eral, larch produced the largest CW, and the two broadleaf 
species produced similar CW. The size of CR for broadleaf 
species varied considerably, especially poplar.

3.5 � Fitting evaluation
A further graphical inspection (Fig.  7) showed that all 
methods fitted the data well, and there was no significant 
deviation from the homogeneous error variance even if 
without applying the weighting function in NSURMEM.

Table  8 summarizes the fit statistics of the NSUR-
MEM and GAM by species. Apparently, all methods 
provided reasonably good fits to the data. The statis-
tics showed that in most cases, the GAM produced 
slightly lower ME, MAE, and RMSE and higher FI (FI% 

from 0.66% to 39.56%). The CR of the NSURMEM for 
birch with the similar but lower MAE than the GAM. 
For CW of all species, the FI values of the GAM were 
higher than those of the NSURMEM by 4.14% for larch, 
2.84% for birch, and 4.15% for poplar.

3.6 � Model validation
An overall summary of the LOOCV is given in Table 9. For 
most CR and all CW of all tree species, GAM provided 
slightly higher precision than NSURMEM based on valida-
tion statistics. For CW of all species, the FI values of the 
GAM were higher than those of the NSURMEM by 2.66% 
for larch, 0.94% for birch, and 1.61% for poplar.

Furthermore, the boxplots of residuals of the NSUR-
MEM and GAM were plotted against DBH classes of 
8 cm width (cf. Fig.  8), while the 41 cm DBH classes 
were further pooled with the previous DBH classes 
since there were very few observations (12, 3, and 2 
trees for larch, birch, and poplar, respectively). Gener-
ally, neither method showed serious bias. The bias of 
NSURMEM and GAM occurred mainly in the largest 
DBH class, i.e., the class with fewer observations, and 
behaved consistently in the smaller DBH classes with 
more observations.

4 � Discussion
4.1 � The growth trend of the four CR
Appropriate models were developed for each CR of 
larch, birch, and poplar in natural secondary forests. It 
is noteworthy that the CR of identical tree species may 
be influenced by different variables. Due to the plastic-
ity and adaptive strategies of the crown, growth trends 
in different directions may depend on complex stand 
conditions, intense competition with neighboring trees, 
and irregular light, water, and nutrients in natural forest 
communities (Grote 2003; Kong et al. 2021). The result-
ing crown asymmetry will allow crown development to 
be adapted to the local environment to maximize access 
to resources (Attocchi and Skovsgaard 2015; Gao et  al. 
2021; Krůček et  al. 2019; Pretzsch 2019). In addition, 
estimating the CR in different basic directions of each 

Table 6  Formulae of the final GAM systems for larch, birch, and poplar

Note: αE, αS, αW, and αN are intercepts of the four CR; S1·(⋅), S2·(⋅), and S3·(⋅) are smooth functions of the four CR, and all other variables are as previously defined

Larch Birch Poplar

CREij = αE + S1E(DBHij) + S2E(HCBij) + S3E(BAi) CREij = αE + S1E(DBHij) + S2E(HCBij) CREij = αE + S1E(DBHij) + S2E(BAi)

CRSij = αS + S1S(DBHij) + S2S(HCBij) + S3S(BAi) CRSij = αS + S1S(DBHij) + S2S(HCBij) CRSij = αS + S1S(DBHij)

CRW​ij = αW + S1W(DBHij) + S2W(HCBij) CRW​ij = αW + S1W(DBHij) + S2W(HCBij) CRW​ij = αW + S1W(DBHij) + S1W(THTi)

CRNij = αN + S1N(DBHij) + S2N(HCBij) + S3N(BAi) CRNij = αN + S1N(DBHij) + S2N(HCBij) CRNij = αN + S1N(DBHij) + S2N(HCBij) + S3N(BALij)

CWij = (CREij + CRSij + CRW​ij + CRNij)/2 CWij = (CREij + CRSij + CRW​ij + CRNij)/2 CWij = (CREij + CRSij + CRW​ij + CRNij)/2

Table 7  Estimated coefficients and statistical characteristics of 
GAM systems for the CR of larch, birch, and poplar

Note: SE standard errors, EDF effective degrees of freedom, and all parameters 
are significant at P = 0.05

Species CR Estimate (SE) EDF

Intercept S1·(⋅) S2·(⋅) S3·(⋅)

Larch CRE 1.358 (0.005) 4.182 3.853 8.427

CRS 1.400 (0.005) 5.938 3.679 8.219

CRW​ 1.340 (0.005) 3.990 4.716

CRN 1.339 (0.005) 3.264 3.908 6.042

Birch CRE 1.342 (0.008) 6.149 3.886

CRS 1.410 (0.008) 2.872 3.254

CRW​ 1.278 (0.007) 2.575 1.000

CRN 1.271 (0.007) 1.000 1.000

Poplar CRE 1.382 (0.016) 3.808 7.389

CRS 1.550 (0.017) 1.000

CRW​ 1.466 (0.017) 1.000 2.506

CRN 1.435 (0.016) 4.131 1.000 1.000



Page 13 of 21Wang et al. Annals of Forest Science           (2023) 80:11 	

Fig. 5  Partial residual plots of covariables to each CR for a larch, b birch, and c poplar. The solid line in each plot is the estimate of the smooth 
function, while the dashed lines are roughly 95% confidence limits. At the base of each plot is a univariate histogram (rugplot) showing the 
distribution of data points
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tree will be of great value due to the need for explicit 
crown asymmetry information in numerous research 
areas such as windthrow susceptibility estimation, and 

wood quality simulation. (Grote 2003; Kellomäki et  al. 
1999; Krůček et  al. 2019; Skatter and Kucera 2000; Sun 
et al. 2022). The results indicated that building separate 

Fig. 6  Intraspecific and interspecific variability in CR and CW for the three species generated using NSURMEM and GAM systems

Fig. 7  Multi-panel display of residuals versus predicted values of NSURMEM and GAM systems for larch, birch, and poplar
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models for each CR avoided the problem of neglect-
ing the asymmetry of the tree crown in each direction. 
Although this practice may reduce the applicability of 

the models, it provided a more robust and precise expla-
nation for the relationships among CR and the covari-
ables (Figs. 4 and 5).

Table 8  The goodness-of-fit statistics of the NSURMEM and GAM systems for larch, birch, and poplar

Note: The bolded numbers indicate the best performance for each case of the NSURMEM and GAM systems

CR NSURMEM system GAM system FI%

ME MAE RMSE FI ME MAE RMSE FI

Larch
  CRE 0.0071 0.3844 0.5075 0.3158 0.0000 0.3799 0.5009 0.3334 5.59

  CRS 0.0020 0.3793 0.4971 0.3477 0.0000 0.3729 0.4898 0.3668 5.47

  CRW​ − 0.0017 0.3715 0.4837 0.3248 0.0000 0.3702 0.4824 0.3284 1.08

  CRN 0.0014 0.3854 0.5017 0.3041 0.0000 0.3815 0.4968 0.3175 4.42

  CW 0.0044 0.5014 0.6745 0.5092 0.0000 0.4883 0.6598 0.5303 4.14

Birch
  CRE 0.0348 0.4175 0.5601 0.2323 0.0000 0.4194 0.5555 0.2450 5.45

  CRS 0.0453 0.4048 0.5365 0.2889 0.0000 0.4065 0.5326 0.2993 3.59

  CRW​ 0.0269 0.3803 0.5036 0.2306 0.0000 0.3806 0.5020 0.2354 2.08

  CRN 0.0541 0.3686 0.4938 0.2399 0.0000 0.3695 0.4906 0.2500 4.20

  CW 0.0805 0.4895 0.6637 0.4515 0.0000 0.4886 0.6559 0.4643 2.84

Poplar
  CRE 0.0314 0.4030 0.5266 0.2147 0.0000 0.3762 0.4973 0.2997 39.56

  CRS − 0.0723 0.4234 0.5508 0.2745 0.0000 0.4126 0.5359 0.3134 14.15

  CRW​ − 0.0247 0.4204 0.5473 0.3604 0.0000 0.4164 0.5459 0.3637 0.92

  CRN 0.0139 0.3803 0.5071 0.3069 0.0000 0.3803 0.5064 0.3089 0.66

  CW − 0.0259 0.4570 0.6036 0.5456 0.0000 0.4379 0.5884 0.5682 4.15

Table 9  The statistics of LOOCV of the NSURMEM and GAM systems for larch, birch, and poplar

Note: The bolded numbers indicate the best performance for each case of the NSURMEM and GAM systems

CR NSURMEM system GAM system FI%

ME MAE RMSE FI ME MAE RMSE FI

Larch
  CRE 0.0066 0.3855 0.5091 0.3116 0.0042 0.3845 0.5111 0.3061 − 1.75

  CRS 0.0015 0.3805 0.4987 0.3436 0.0016 0.3759 0.4940 0.3559 3.59

  CRW​ − 0.0018 0.3721 0.4845 0.3226 − 0.0010 0.3716 0.4841 0.3236 0.31

  CRN 0.0011 0.3863 0.5030 0.3006 0.0006 0.3844 0.5003 0.3080 2.46

  CW 0.0037 0.5034 0.6771 0.5053 0.0027 0.4946 0.6679 0.5187 2.66

Birch
  CRE 0.0351 0.4188 0.5621 0.2269 0.0008 0.4234 0.5627 0.2252 − 0.75

  CRS 0.0459 0.4060 0.5382 0.2842 0.0005 0.4091 0.5367 0.2883 1.44

  CRW​ 0.0267 0.3813 0.5051 0.2260 0.0005 0.3829 0.5055 0.2247 − 0.56

  CRN 0.0536 0.3697 0.4953 0.2356 0.0004 0.3717 0.4937 0.2403 2.01

  CW 0.0807 0.4916 0.6670 0.4460 0.0011 0.4939 0.6645 0.4502 0.94

Poplar
  CRE 0.0312 0.4081 0.5330 0.1955 0.0227 0.3870 0.5147 0.2497 27.67

  CRS − 0.0741 0.4266 0.5556 0.2619 0.0155 0.4158 0.5414 0.2992 14.25

  CRW​ − 0.0317 0.4249 0.5529 0.3471 − 0.0102 0.4216 0.5512 0.3511 1.15

  CRN 0.0128 0.3831 0.5109 0.2965 0.0244 0.3896 0.5238 0.2604 − 12.17

  CW − 0.0309 0.4630 0.6110 0.5344 0.0261 0.4485 0.6054 0.5429 1.61
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Each of the selected covariables accurately reflects tree 
growth, resource allocation relationships, or competition 
with neighboring trees. Moreover, these covariates are 
readily available through field surveys or calculations, facil-
itating the practical application of additive models (Chen 
et al. 2021; Raptis et al. 2018; Sharma et al. 2016). Consist-
ent with previous studies (Chen et al. 2021; Fu et al. 2013; 
Raptis et al. 2018; Sharma et al. 2016), we found that tree 
size (HCB and THT) and competition (BA and BAL) were 
the significant influencing variables for the crown (Fig. 4). 
The negative influence of HCB and THT on the CR may be 
attributed to resource allocation strategies related to bio-
mechanical and hydraulic constraints (Zhang et al. 2019). 
The significant negative influences of competition on the 
crown may be since, with limited resource availability, the 
larger the competition, the fewer resources available to 
individual trees (Gill et al. 2000; Hemery et al. 2005; Qin 
et  al. 2022). Canopies could optimize crown filling by 
changing structure and growth strategies through their 
plasticity and vertical stratification to efficiently use above-
ground space (Morin et al. 2011; Pretzsch 2014), adapt to 
the changing environment of competing neighbors (Gao 
et  al. 2021; Kaitaniemi and Lintunen 2010; Longuetaud 
et  al. 2013), and efficiently utilize light resources (Jucker 
et al. 2015; Pretzsch 2019). However, these characteristics 
may not be sufficient to counteract the negative effects of 
competition. Competition variables were not significant in 
the NSURMEM of birch. It is probably because birch is a 
pioneer species, and the smaller influence of competition 

was explained by the random parameters (Huang et  al. 
2009; Wang et al. 2018; Zhou et al. 1989).

Moreover, the effects of the covariables on the identi-
cal CR may not be monotonic, as indicated by the partial 
residual plots of GAM (Fig. 5), with possible attribution to 
ecological niche differentiation due to the complex stand 
structure of natural secondary forests (Buchacher and 
Ledermann 2020; Ciceu et  al. 2020; del Río et  al. 2014; 
Jucker et  al. 2015). Further support was given by Thorpe 
et  al. (2010) who found that in mixed-species scenarios, 
trees growing in dense communities were often associated 
with larger predicted canopies. However, as the statistics 
indicated (Tables 8 and 9), there may be other covariables 
that significantly affect crown development not incor-
porated. Future work may consider quantifying other 
important covariables such as climate and soil to better 
understand their influence on the CR of individual trees.

Our research has shown that there are clear differences in 
crown development among different tree species and even 
among different directions of the same tree species (Fig. 6). 
As expected, the four CR of all tree species increased with 
tree size gradually and showed significant differences. In 
the sapling stage, lateral crown expansion is rarely limited 
by neighboring trees, and light is usually the most limiting 
resource for growth, with the uniform growth of the CR 
allowing them to survive in low light conditions (Ricard 
et al. 2003). As tree size increases, the crown preferentially 
expands to the side with gaps to maximize the accumulation 
of photosynthetic products for further investment in stem 

Fig. 8  Boxplots of residuals in different DBH classes of NSURMEM and GAM systems for larch, birch, and poplar. The grey numbers below each 
subplot indicate the observations of each DBH class for each tree species
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growth for mechanical safety, resulting in an asymmetrical 
crown (Krůček et  al. 2019; Xu et  al. 2022). Larch consist-
ently has a larger and more uniform crown than birch and 
poplar, which may be attributed to its growth characteris-
tics and less plasticity than broadleaf trees (Buchacher and 
Ledermann 2020; Holdaway 1986). Continued research on 
the crown growth of these three important tree species that 
account for a relatively large proportion of natural second-
ary forests in Northeastern China is warranted.

4.2 � Remarks on the performance of the models
As expected, the NSURMEM and GAM adequately pre-
dicted the CR and CW of each tree species in the natural 
secondary forests studied, indicating that both additive 
models have passed the statistical test. In addition, addi-
tive models consider not only the crown asymmetric 
information, but also the additivity of CW and CR (Fu 
et al. 2017b; Lei et al. 2018). NSURMEM and GAM are by 
far the first time to model CR data for multiple tree spe-
cies in a systematic and large-scale manner. Our results 
showed that GAM produced similar or even better pre-
diction accuracy than NSURMEM for the CR and CW in 
the absence of calibration (Tables 8 and 9).

Compared to the traditional methods (ONLS and 
NMEM), the characteristics of NSURMEM are evident. 
Firstly, NSURMEM with strong logic could consider 
cross-model correlation and produce biologically mean-
ingful parameters and robust predictions (Fu et al. 2017c; 
Kangas et  al. 2016). Secondly, NSURMEM could handle 
the lack of independence due to the hierarchically nested 
structure (Calama and Montero 2004; Chen et al. 2021). 
Finally, NSURMEM allows flexible calibration for ran-
dom effects using correlations among sub-models. How-
ever, NSURMEM is necessary to face the problems of 
determining the model form, checking the relationship 
between covariables and parameters, and estimating the 
initial values of the function parameters, which still seem 
cumbersome and awkward nowadays (Wang et al. 2005). 
In recent years, the application of the linear seemingly 
unrelated mixed-effects model (SURMEM) is becom-
ing more and more widespread in forestry (Bronisz and 
Mehtätalo 2020b; Mehtätalo and Lappi 2020). Previous 
studies have demonstrated the more flexible calibration of 
SURMEM (Hao et al. 2022; Xie et al. 2022). For compari-
son with GAM in a fair perspective, we did not calibrate 
NSURMEM. It also avoids large deviations caused by 
inaccurate calibration data (Hussain et  al. 2021; Westfall 
and Scott 2010).

GAM is a powerful exploratory and flexible tool for 
detecting simple linear relationships and complex patterns 

in the distribution of forest properties (Albert and Schmidt 
2010; Frescino et  al. 2001). Compared to the traditional 
methods of ONLS and NMEM, the GAM simplifies those 
processes by automatically identifying the appropriate 
relationships between predictors and response variables 
(Albert and Schmidt 2010; Di Salvatore et al. 2021; Levine 
et al. 2021). Moreover, due to the data-driven characteris-
tic, GAM allows to reveal variability that is masked by par-
ametric models and thus provides key ecological insights 
(e.g., the non-monotonic relationship between compe-
tition and CR) (Levine et  al. 2021; Moisen et  al. 2006; 
Wernicke et al. 2020). Currently, many scholars have con-
cluded that GAM is more resistant to extreme values than 
other models (Byun et al. 2013), which is certainly remark-
able in practice if valuable data could not be authenticated 
and excluded. Thus, a wider range of application areas for 
GAM is waiting to be actively explored.

Nonetheless, all methods face the limitation of hardly giv-
ing accurate estimates if applied to data ranges and forest con-
ditions beyond equations (Bi et  al. 2010; Kangas et  al. 2016; 
Levine et al. 2021). In the work of Frescino et al. (2001), this 
problem was solved by specifying the values in the validation 
dataset that were outside the range as the maximum or mini-
mum values of the corresponding variables in the fitted dataset. 
Other scholars have suggested expanding the fitted data set to 
cover a larger range of data to overcome this issue (Albert and 
Schmidt 2010; He et  al. 2021). Fortunately, the NSURMEM 
and GAM in this study have achieved satisfactory accuracy. It 
should be noted, however, that the variable range of the data 
behind the models needs to be carefully reviewed before using 
them for prediction, as it will ultimately determine the accuracy 
of the sample-based equations (Bi et al. 2010).

5 � Conclusion
In this study, we used two new methods, NSURMEM and 
GAM, to establish CW additive models for larch, birch, 
and poplar in the natural secondary forests of North-
eastern China. Through the development of the additive 
models, we found that the CR of each tree species exhib-
ited different growth trends and was influenced to vary-
ing degrees by tree size and competition. The birch and 
poplar were more likely to exhibit asymmetric crowns 
than larch. NSURMEM considered the inherent addi-
tivity between CR and CW and the hierarchical nesting 
structure of crown data. GAM simplified the model form 
selection process and could handle non-linear and non-
monotonic relationships between variables. In the future, 
calibrations of NSURMEM and GAM can be considered 
for comparison. However, large-scale sampling calibra-
tion is not recommended due to the high cost.



Page 18 of 21Wang et al. Annals of Forest Science           (2023) 80:11 

Appendix
Figure 9

Acknowledgements
The authors are deeply grateful to the editor, the associate editor, and all 
anonymous reviewers for their helpful feedback and valuable suggestions. 
We would also like to thank the researchers, MSc, and PhD students who 
contributed to this article.

Code availability
The code used in the current study can be obtained from the corresponding 
author with reasonable requirements.

Authors’ contributions
Conceptualization: Junjie Wang, Lichun Jiang, Youzhu Wang; methodology: 
Junjie Wang, Shidong Xin, Pei He; formal analysis and investigation: Junjie 
Wang, Shidong Xin, Pei He, Yunfei Yan; writing—original draft preparation: 
Junjie Wang; writing—review and editing: Junjie Wang, Youzhu Wang, Lichun 
Jiang; funding acquisition: Lichun Jiang; supervision: Lichun Jiang. All authors 
read and approved the final manuscript.

Funding
This research was supported by the National Natural Science Foundation of 
China (Grant Nos. 31170591 and 32271866); Heilongjiang Touyan Innovation 
Team Program; and National Forestry and Grassland Data Center-Heilongjiang 
platform (2005DKA32200-OH).

Availability of data and materials
The data used in the current study can be obtained from the corresponding 
author with reasonable requirements.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors gave their informed consent to this publication and its content.

Competing of interests
The authors declare that they have no conflict of interest.

Received: 6 July 2022   Accepted: 14 November 2022

References
Adamec Z, Drápela K (2016) Generalized additive models as an alternative 

approach to the modelling of the tree height-diameter relationship. J For 
Sci 61:235–243. https://​doi.​org/​10.​17221/​14/​2015-​JFS

Albert M, Schmidt M (2010) Climate-sensitive modelling of site-productivity 
relationships for Norway spruce (Picea abies (L.) Karst.) and common 
beech (Fagus sylvatica L.). For Ecol Manage 259:739–749. https://​doi.​org/​
10.​1016/j.​foreco.​2009.​04.​039

Amaro A, Reed D, Soares P (2003) Modelling forest systems. CABI, Wallingford
Attocchi G, Skovsgaard JP (2015) Crown radius of pedunculate oak (Quercus 

robur L.) depending on stem size, stand density and site productivity. 
Scand J For Res 30:289–303. https://​doi.​org/​10.​1080/​02827​581.​2014.​
10017​82

Bechtold WA (2004) Largest-crown-width prediction models for 53 species in 
the western United States. West J Appl For 19:245–251. https://​doi.​org/​
10.​1093/​wjaf/​19.4.​245

Bi H (2000) Trigonometric variable-form taper equations for Australian 
eucalypts. For Sci 46:397–409. https://​doi.​org/​10.​1093/​fores​tscie​nce/​
46.3.​397

Bi H, Long Y, Turner J et al (2010) Additive prediction of aboveground biomass 
for Pinus radiata (D. Don) plantations. For Ecol Manage 259:2301–2314. 
https://​doi.​org/​10.​1016/j.​foreco.​2010.​03.​003

Bragg DC (2001) A local basal area adjustment for crown width prediction. 
North J Appl For 18:22–28. https://​doi.​org/​10.​1093/​njaf/​18.1.​22

Fig. 9  Scatter plots of crown components versus covariates in the 
final additive models for a larch, b birch, and c poplar

https://doi.org/10.17221/14/2015-JFS
https://doi.org/10.1016/j.foreco.2009.04.039
https://doi.org/10.1016/j.foreco.2009.04.039
https://doi.org/10.1080/02827581.2014.1001782
https://doi.org/10.1080/02827581.2014.1001782
https://doi.org/10.1093/wjaf/19.4.245
https://doi.org/10.1093/wjaf/19.4.245
https://doi.org/10.1093/forestscience/46.3.397
https://doi.org/10.1093/forestscience/46.3.397
https://doi.org/10.1016/j.foreco.2010.03.003
https://doi.org/10.1093/njaf/18.1.22


Page 19 of 21Wang et al. Annals of Forest Science           (2023) 80:11 	

Bronisz K, Mehtätalo L (2020a) Mixed-effects generalized height–diameter 
model for young silver birch stands on post-agricultural lands. For Ecol 
Manage 460:117901. https://​doi.​org/​10.​1016/j.​foreco.​2020.​117901

Bronisz K, Mehtätalo L (2020b) Seemingly unrelated mixed-effects biomass 
models for young silver birch stands on post-agricultural lands. Forests 
11:381. https://​doi.​org/​10.​3390/​f1104​0381

Buchacher R, Ledermann T (2020) Interregional crown width models for 
individual trees growing in pure and mixed stands in Austria. Forests 
11:114. https://​doi.​org/​10.​3390/​f1101​0114

Byun JG, Lee WK, Kim M et al (2013) Radial growth response of Pinus den-
siflora and Quercus spp. to topographic and climatic factors in South 
Korea. J Plant Ecol 6:380–392. https://​doi.​org/​10.​1093/​jpe/​rtt001

Calama R, Montero G (2004) Interregional nonlinear height-diameter 
model with random coefficients for stone pine in Spain. Can J For Res 
34:150–163. https://​doi.​org/​10.​1139/​x03-​199

Cescatti A (1997) Modelling the radiative transfer in discontinuous canopies 
of asymmetric crowns. I. Model structure and algorithms. Ecol Modell 
101:263–274. https://​doi.​org/​10.​1016/​S0304-​3800(97)​00050-1

Chen Q, Duan G, Liu Q et al (2021) Estimating crown width in degraded 
forest: A two-level nonlinear mixed-effects crown width model for 
Dacrydium pierrei and Podocarpus imbricatus in tropical China. For Ecol 
Manage 497:119486. https://​doi.​org/​10.​1016/j.​foreco.​2021.​119486

Ciceu A, Garcia-Duro J, Seceleanu I et al (2020) A generalized nonlinear 
mixed-effects height–diameter model for Norway spruce in mixed-
uneven aged stands. For Ecol Manage 477:118507. https://​doi.​org/​10.​
1016/j.​foreco.​2020.​118507

del Río M, Condés S, Pretzsch H (2014) Analyzing size-symmetric vs. size-
asymmetric and intra-vs. inter-specific competition in beech (Fagus 
sylvatica L.) mixed stands. For Ecol Manage 325:90–98. https://​doi.​org/​
10.​1016/j.​foreco.​2014.​03.​047

Di Salvatore U, Marchi M, Cantiani P (2021) Single-tree crown shape and 
crown volume models for Pinus nigra J. F. Arnold in central Italy. Ann 
For Sci 78:1–10. https://​doi.​org/​10.​1007/​s13595-​021-​01099-4

Dong L, Jin X, Pukkala T et al (2019) How to manage mixed secondary forest 
in a sustainable way? Eur J Forest Res 138:789–801. https://​doi.​org/​10.​
1007/​s10342-​019-​01196-0

Dong L, Zhang L, Li F (2014) A compatible system of biomass equations for 
three conifer species in Northeast, China. For Ecol Manage 329:306–
317. https://​doi.​org/​10.​1016/j.​foreco.​2014.​05.​050

Fichtner A, Sturm K, Rickert C et al (2013) Crown size-growth relationships 
of European beech (Fagus sylvatica L.) are driven by the interplay of 
disturbance intensity and inter-specific competition. For Ecol Manage 
302:178–184. https://​doi.​org/​10.​1016/j.​foreco.​2013.​03.​027

Fieuws S, Verbeke G (2006) Pairwise fitting of mixed models for the joint 
modeling of multivariate longitudinal profiles. Biometrics 62:424–431. 
https://​doi.​org/​10.​1111/j.​1541-​0420.​2006.​00507.x

Frescino TS, Edwards TC Jr, Moisen GG (2001) Modeling spatially explicit 
forest structural attributes using generalized additive models. J Veg Sci 
12:15–26. https://​doi.​org/​10.​1111/j.​1654-​1103.​2001.​tb026​13.x

Fu L, Sharma RP, Hao K et al (2017a) A generalized interregional nonlinear 
mixed-effects crown width model for Prince Rupprecht larch in north-
ern China. For Ecol Manage 389:364–373. https://​doi.​org/​10.​1016/j.​
foreco.​2016.​12.​034

Fu L, Sharma RP, Wang G et al (2017c) Modelling a system of nonlinear addi-
tive crown width models applying seemingly unrelated regression for 
Prince Rupprecht larch in northern China. For Ecol Manage 386:71–80. 
https://​doi.​org/​10.​1016/j.​foreco.​2016.​11.​038

Fu L, Sun H, Sharma RP et al (2013) Nonlinear mixed-effects crown width 
models for individual trees of Chinese fir (Cunninghamia lanceolata) in 
south-central China. For Ecol Manage 302:210–220. https://​doi.​org/​10.​
1016/j.​foreco.​2013.​03.​036

Fu L, Xiang W, Wang G et al (2017b) Additive crown width models compris-
ing nonlinear simultaneous equations for Prince Rupprecht larch 
(Larix principis-rupprechtii) in northern China. Trees 31:1959–1971. 
https://​doi.​org/​10.​1007/​s00468-​017-​1600-0

Gao H, Chen D, Sun X et al (2021) Modelling the responses of crown profiles 
to competition in terms of different tree classes and directions in 
two coniferous tree species in northeastern China. Eur J Forest Res 
140:159–174. https://​doi.​org/​10.​1007/​s10342-​020-​01321-4

Gill SJ, Biging GS, Murphy EC (2000) Modeling conifer tree crown radius and 
estimating canopy cover. For Ecol Manage 126:405–416. https://​doi.​org/​
10.​1016/​S0378-​1127(99)​00113-9

Grote R (2003) Estimation of crown radii and crown projection area from 
stem size and tree position. Ann For Sci 60:393–402. https://​doi.​org/​10.​
1051/​forest:​20030​31

Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and generalized 
additive models in studies of species distributions: setting the scene. Ecol 
Model 157:89–100. https://​doi.​org/​10.​1016/​S0304-​3800(02)​00204-1

Hamza TH, Arends LR, van Houwelingen HC et al (2009) Multivariate random 
effects meta-analysis of diagnostic tests with multiple thresholds. BMC 
Med Res Methodol 9:73. https://​doi.​org/​10.​1186/​1471-​2288-9-​73

Hao Y, Widagdo FR, Liu X et al (2022) Estimation and calibration of stem diame-
ter distribution using UAV laser scanning data: A case study for larch (Larix 
olgensis) forests in Northeast China. Remote Sens Environ 268:112769. 
https://​doi.​org/​10.​1016/j.​rse.​2021.​112769

Hasenauer H (1997) Dimensional relationships of open-grown trees in Austria. 
For Ecol Manage 96:197–206. https://​doi.​org/​10.​1016/​S0378-​1127(97)​
00057-1

Hasenauer H, Monserud RA, Gregoire TG (1998) Using simultaneous regression 
techniques with individual-tree growth models. For Sci 44:87–95. https://​
doi.​org/​10.​1093/​fores​tscie​nce/​44.1.​87

Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Routledge, Great 
Britain

He P, Hussain A, Shahzad MK et al (2021) Evaluation of four regression 
techniques for stem taper modeling of Dahurian larch (Larix gmelinii) in 
Northeastern China. For Ecol Manage 494:119336. https://​doi.​org/​10.​
1016/j.​foreco.​2021.​119336

Hemery GE, Savill PS, Pryor SN (2005) Applications of the crown diameter–
stem diameter relationship for different species of broadleaved trees. For 
Ecol Manage 215:285–294. https://​doi.​org/​10.​1016/j.​foreco.​2005.​05.​016

Holdaway MR (1986) Modeling tree crown ratio. For Chron 62:451–455. 
https://​doi.​org/​10.​5558/​tfc62​451-5

Huang S, Titus SJ (1993) An index of site productivity for uneven-aged or 
mixed-species stands. Can J For Res 23:558–562. https://​doi.​org/​10.​1139/​
x93-​074

Huang S, Wiens DP, Yang Y et al (2009) Assessing the impacts of species com-
position, top height and density on individual tree height prediction of 
quaking aspen in boreal mixedwoods. For Ecol Manage 258:1235–1247. 
https://​doi.​org/​10.​1016/j.​foreco.​2009.​06.​017

Hussain A, Shahzad MK, Burkhart HE et al (2021) Stem taper functions for 
white birch (Betula platyphylla) and costata birch (Betula costata) in 
the Xiaoxing’an Mountains, northeast China. Forestry 94:714–733. 
https://​doi.​org/​10.​1093/​fores​try/​cpab0​14

Institute SAS, Inc. (2011) In: SAS Institute, Inc. (ed) SAS/ETS 9.3. User’s guide, 
Cary, NC

Jucker T, Bouriaud O, Coomes DA (2015) Crown plasticity enables trees to opti-
mize canopy packing in mixed-species forests. Funct Ecol 29:1078–1086. 
https://​doi.​org/​10.​1111/​1365-​2435.​12428

Jucker T, Caspersen J, Chave J et al (2017) Allometric equations for integrating 
remote sensing imagery into forest monitoring programmes. Glob Chang 
Biol 23:177–190. https://​doi.​org/​10.​1111/​gcb.​13388

Kaitaniemi P, Lintunen A (2010) Neighbor identity and competition influence 
tree growth in Scots pine, Siberian larch, and silver birch. Ann For Sci 
67:604. https://​doi.​org/​10.​1051/​forest/​20100​17

Kangas A, Myllymäki M, Gobakken T et al (2016) Model-assisted forest inven-
tory with parametric, semiparametric, and nonparametric models. Can J 
For Res 46:855–868. https://​doi.​org/​10.​1139/​cjfr-​2015-​0504

Kellomäki S, Ikonen V-P, Peltola H et al (1999) Modelling the structural growth 
of Scots pine with implications for wood quality. Ecol Model 122:117–
134. https://​doi.​org/​10.​1016/​S0304-​3800(99)​00086-1

Kong F, Bi H, McLean M et al (2021) Comparative performances of new and 
existing indices of crown asymmetry: an evaluation using tall trees of 
Eucalyptus pilularis (Smith). J For Res 32:43–65. https://​doi.​org/​10.​1007/​
s11676-​020-​01180-0

Krůček M, Trochta J, Cibulka M et al (2019) Beyond the cones: How crown 
shape plasticity alters aboveground competition for space and light—
Evidence from terrestrial laser scanning. Agric For Meteorol 264:188–199. 
https://​doi.​org/​10.​1016/j.​agrfo​rmet.​2018.​09.​016

https://doi.org/10.1016/j.foreco.2020.117901
https://doi.org/10.3390/f11040381
https://doi.org/10.3390/f11010114
https://doi.org/10.1093/jpe/rtt001
https://doi.org/10.1139/x03-199
https://doi.org/10.1016/S0304-3800(97)00050-1
https://doi.org/10.1016/j.foreco.2021.119486
https://doi.org/10.1016/j.foreco.2020.118507
https://doi.org/10.1016/j.foreco.2020.118507
https://doi.org/10.1016/j.foreco.2014.03.047
https://doi.org/10.1016/j.foreco.2014.03.047
https://doi.org/10.1007/s13595-021-01099-4
https://doi.org/10.1007/s10342-019-01196-0
https://doi.org/10.1007/s10342-019-01196-0
https://doi.org/10.1016/j.foreco.2014.05.050
https://doi.org/10.1016/j.foreco.2013.03.027
https://doi.org/10.1111/j.1541-0420.2006.00507.x
https://doi.org/10.1111/j.1654-1103.2001.tb02613.x
https://doi.org/10.1016/j.foreco.2016.12.034
https://doi.org/10.1016/j.foreco.2016.12.034
https://doi.org/10.1016/j.foreco.2016.11.038
https://doi.org/10.1016/j.foreco.2013.03.036
https://doi.org/10.1016/j.foreco.2013.03.036
https://doi.org/10.1007/s00468-017-1600-0
https://doi.org/10.1007/s10342-020-01321-4
https://doi.org/10.1016/S0378-1127(99)00113-9
https://doi.org/10.1016/S0378-1127(99)00113-9
https://doi.org/10.1051/forest:2003031
https://doi.org/10.1051/forest:2003031
https://doi.org/10.1016/S0304-3800(02)00204-1
https://doi.org/10.1186/1471-2288-9-73
https://doi.org/10.1016/j.rse.2021.112769
https://doi.org/10.1016/S0378-1127(97)00057-1
https://doi.org/10.1016/S0378-1127(97)00057-1
https://doi.org/10.1093/forestscience/44.1.87
https://doi.org/10.1093/forestscience/44.1.87
https://doi.org/10.1016/j.foreco.2021.119336
https://doi.org/10.1016/j.foreco.2021.119336
https://doi.org/10.1016/j.foreco.2005.05.016
https://doi.org/10.5558/tfc62451-5
https://doi.org/10.1139/x93-074
https://doi.org/10.1139/x93-074
https://doi.org/10.1016/j.foreco.2009.06.017
https://doi.org/10.1093/forestry/cpab014
https://doi.org/10.1111/1365-2435.12428
https://doi.org/10.1111/gcb.13388
https://doi.org/10.1051/forest/2010017
https://doi.org/10.1139/cjfr-2015-0504
https://doi.org/10.1016/S0304-3800(99)00086-1
https://doi.org/10.1007/s11676-020-01180-0
https://doi.org/10.1007/s11676-020-01180-0
https://doi.org/10.1016/j.agrformet.2018.09.016


Page 20 of 21Wang et al. Annals of Forest Science           (2023) 80:11 

Lei X, Yu L, Hong L (2016) Climate-sensitive integrated stand growth model 
(CS-ISGM) of Changbai larch (Larix olgensis) plantations. For Ecol Manage 
376:265–275. https://​doi.​org/​10.​1016/j.​foreco.​2016.​06.​024

Lei Y, Fu L, Affleck DL et al (2018) Additivity of nonlinear tree crown width 
models: Aggregated and disaggregated model structures using nonlin-
ear simultaneous equations. For Ecol Manage 427:372–382. https://​doi.​
org/​10.​1016/j.​foreco.​2018.​06.​013

Levine J, Valpine P de, Battles J (2021) Generalized additive models reveal among-
stand variation in live tree biomass equations. Can J For Res 51:546–564. 
https://​doi.​org/​10.​1139/​cjfr-​2020-​0219

Longuetaud F, Piboule A, Wernsdörfer H et al (2013) Crown plasticity reduces 
inter-tree competition in a mixed broadleaved forest. Eur J Forest Res 
132:621–634. https://​doi.​org/​10.​1007/​s10342-​013-​0699-9

Mehtätalo L, Lappi J (2020) Biometry for forestry and environmental data: With 
examples in R. Chapman and Hall/CRC​

Moisen GG, Freeman EA, Blackard JA et al (2006) Predicting tree species 
presence and basal area in Utah: a comparison of stochastic gradi-
ent boosting, generalized additive models, and tree-based methods. 
Ecol Model 199:176–187. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2006.​
05.​021

Morin X, Fahse L, Scherer-Lorenzen M et al (2011) Tree species richness promotes 
productivity in temperate forests through strong complementarity 
between species. Ecol Lett 14:1211–1219. https://​doi.​org/​10.​1111/j.​1461-​
0248.​2011.​01691.x

Pinheiro J, Bates D (2006) Mixed-effects models in S and S-PLUS. Springer Science 
& Business Media, New York

Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-spe-
cies stands compared with monocultures. For Ecol Manage 327:251–264. 
https://​doi.​org/​10.​1016/j.​foreco.​2014.​04.​027

Pretzsch H (2019) The effect of tree crown allometry on community dynamics 
in mixed-species stands versus monocultures. A review and perspectives 
for modeling and silvicultural regulation. Forests 10:810. https://​doi.​org/​10.​
3390/​f1009​0810

Qin Y, He X, Lei X et al (2022) Tree size inequality and competition effects on 
nonlinear mixed effects crown width model for natural spruce-fir-broadleaf 
mixed forest in northeast China. For Ecol Manage 518:120291. https://​doi.​
org/​10.​1016/j.​foreco.​2022.​120291

Raptis D, Kazana V, Kazaklis A et al (2018) A crown width-diameter model for 
natural even-aged black pine forest management. Forests 9:610. https://​doi.​
org/​10.​3390/​f9100​610

Ricard J-P, Messier C, Delagrange S et al (2003) Do understory sapling respond 
to both light and below-ground competition?: a field experiment in a 
north-eastern American hardwood forest and a literature review. Ann For 
Sci 60:749–756. https://​doi.​org/​10.​1051/​forest:​20030​69

Robinson AP, Lane SE, Thérien G (2011) Fitting forestry models using general-
ized additive models: a taper model example. Can J For Res 41:1909–1916. 
https://​doi.​org/​10.​1139/​x11-​095

Russell MB, Weiskittel AR (2011) Maximum and largest crown width equations for 
15 tree species in Maine. North J Appl For 28:84–91. https://​doi.​org/​10.​1093/​
njaf/​28.2.​84

Sánchez-González M, Cañellas I, Montero G (2007) Generalized height-diameter 
and crown diameter prediction models for cork oak forests in Spain. Invest 
Agrar: Sist Recur For 16:76–88

Schluchter MD, Piccorelli AV (2019) Shared parameter models for joint analysis 
of longitudinal and survival data with left truncation due to delayed entry - 
Applications to cystic fibrosis. Stat Methods Med Res 28:1489–1507. https://​
doi.​org/​10.​1177/​09622​80218​764193

Schmidt M, Kiviste A, Gadow K von (2011) A spatially explicit height–diameter 
model for Scots pine in Estonia. Eur J Forest Res 130:303–315. https://​doi.​
org/​10.​1007/​s10342-​010-​0434-8

Sharma RP, Bílek L, Vacek Z et al (2017) Modelling crown width–diameter relation-
ship for Scots pine in the central Europe. Trees 31:1875–1889. https://​doi.​
org/​10.​1007/​s00468-​017-​1593-8

Sharma RP, Vacek Z, Vacek S (2016) Individual tree crown width models for 
Norway spruce and European beech in Czech Republic. For Ecol Manage 
366:208–220. https://​doi.​org/​10.​1016/j.​foreco.​2016.​01.​040

Skatter S, Kucera B (2000) Tree breakage from torsional wind loading due to 
crown asymmetry. For Ecol Manage 135:97–103. https://​doi.​org/​10.​1016/​
S0378-​1127(00)​00301-7

Sönmez T (2009) Diameter at breast height-crown diameter prediction models 
for Picea orientalis. Afr J Agric Res 4:215–219. https://​doi.​org/​10.​81043/​
aperta.​37799

Sun Z, Wang Y, Pan L et al (2022) Hegyi competition index decomposition to 
improve estimation accuracy of Larix olgensis crown radius. Ecol Indic 
143:109322. https://​doi.​org/​10.​1016/j.​ecoli​nd.​2022.​109322

Temesgen H, Monleon VJ, Hann DW (2008) Analysis and comparison of nonlinear 
tree height prediction strategies for Douglas-fir forests. Can J For Res 
38:553–565. https://​doi.​org/​10.​1139/​X07-​104

Thorpe HC, Astrup R, Trowbridge A et al (2010) Competition and tree crowns: 
a neighborhood analysis of three boreal tree species. For Ecol Manage 
259:1586–1596. https://​doi.​org/​10.​1016/j.​foreco.​2010.​01.​035

Wang W, Ge F, Hou Z et al (2021) Predicting crown width and length using non-
linear mixed-effects models: a test of competition measures using Chinese 
fir (Cunninghamia lanceolata (Lamb.) Hook.). Ann For Sci 78:1–17. https://​
doi.​org/​10.​1007/​s13595-​021-​01092-x

Wang X, Tang Z, Fang J (2006) Climatic control on forests and tree species 
distribution in the forest region of Northeast China. J Integr Plant Biol 
48:778–789. https://​doi.​org/​10.​1111/j.​1744-​7909.​2006.​00294.x

Wang X, Zhao D, Liu G et al (2018) Additive tree biomass equations for Betula 
platyphylla Suk. plantations in Northeast China. Ann For Sci 75:129. https://​
doi.​org/​10.​1007/​s13595-​018-​0738-2

Wang Y, Raulier F, Ung C-H (2005) Evaluation of spatial predictions of site index 
obtained by parametric and nonparametric methods—A case study of 
lodgepole pine productivity. For Ecol Manage 214:201–211. https://​doi.​org/​
10.​1016/j.​foreco.​2005.​04.​025

Wernicke J, Körner M, Möller R et al (2020) The potential of generalized additive 
modelling for the prediction of radial growth of Norway spruce from Cen-
tral Germany. Dendrochronologia 63:125743. https://​doi.​org/​10.​1016/j.​
dendro.​2020.​125743

West PW, Ratkowsky DA, Davis AW (1984) Problems of hypothesis testing of 
regressions with multiple measurements from individual sampling units. For 
Ecol Manage 7:207–224. https://​doi.​org/​10.​1016/​0378-​1127(84)​90068-9

Westfall JA, Scott CT (2010) Taper models for commercial tree species in the 
Northeastern United States. For Sci 56:515–528. https://​doi.​org/​10.​1093/​
fores​tscie​nce/​56.6.​515

Wood SN (2004) Stable and efficient multiple smoothing parameter estimation 
for generalized additive models. J Am Stat Assoc 99:673–686. https://​doi.​
org/​10.​1198/​01621​45040​00000​980

Wood SN (2017) Generalized additive models: an introduction with R. CRC Press, 
New York

Xie L, Fu L, Widagdo FRA et al (2022) Improving the accuracy of tree biomass 
estimations for three coniferous tree species in Northeast China. Trees 
36:451–469. https://​doi.​org/​10.​1007/​s00468-​021-​02220-w

Xu Z, Du W, Zhou G et al (2022) Aboveground biomass allocation and additive 
allometric models of fifteen tree species in northeast China based on 
improved investigation methods. For Ecol Manage 505:119918. https://​doi.​
org/​10.​1016/j.​foreco.​2021.​119918

Yang Y, Huang S (2014) Suitability of five cross validation methods for perfor-
mance evaluation of nonlinear mixed-effects forest models - a case study. 
Forestry 87:654–662. https://​doi.​org/​10.​1093/​fores​try/​cpu025

Yang Y, Huang S (2017) Allometric modelling of crown width for white spruce by 
fixed-and mixed-effects models. For Chron 93:138–147. https://​doi.​org/​10.​
5558/​tfc20​17-​020

Zang H, Lei X, Zeng W (2016) Height–diameter equations for larch plantations 
in northern and northeastern China: a comparison of the mixed-effects, 
quantile regression and generalized additive models. Forestry 89:434–445. 
https://doi.org/https://​doi.​org/​10.​1093/​fores​try/​cpw022

Zarnoch SJ, Bechtold WA, Stolte KW (2004) Using crown condition variables as 
indicators of forest health. Can J For Res 34:1057–1070. https://​doi.​org/​10.​
1139/​x03-​277

Zhang L, Gove JH (2005) Spatial assessment of model errors from four regression 
techniques. For Sci 51:334–346. https://​doi.​org/​10.​1093/​fores​tscie​nce/​51.4.​334

Zhang X, Chhin S, Fu L et al (2019) Climate-sensitive tree height–diameter allom-
etry for Chinese fir in southern China. Forestry 92:167–176. https://​doi.​org/​
10.​1093/​fores​try/​cpy043

Zhang X, Wang H, Chhin S et al (2020) Effects of competition, age and climate on 
tree slenderness of Chinese fir plantations in southern China. For Ecol Man-
age 458:117815. https://​doi.​org/​10.​1016/j.​foreco.​2019.​117815

https://doi.org/10.1016/j.foreco.2016.06.024
https://doi.org/10.1016/j.foreco.2018.06.013
https://doi.org/10.1016/j.foreco.2018.06.013
https://doi.org/10.1139/cjfr-2020-0219
https://doi.org/10.1007/s10342-013-0699-9
https://doi.org/10.1016/j.ecolmodel.2006.05.021
https://doi.org/10.1016/j.ecolmodel.2006.05.021
https://doi.org/10.1111/j.1461-0248.2011.01691.x
https://doi.org/10.1111/j.1461-0248.2011.01691.x
https://doi.org/10.1016/j.foreco.2014.04.027
https://doi.org/10.3390/f10090810
https://doi.org/10.3390/f10090810
https://doi.org/10.1016/j.foreco.2022.120291
https://doi.org/10.1016/j.foreco.2022.120291
https://doi.org/10.3390/f9100610
https://doi.org/10.3390/f9100610
https://doi.org/10.1051/forest:2003069
https://doi.org/10.1139/x11-095
https://doi.org/10.1093/njaf/28.2.84
https://doi.org/10.1093/njaf/28.2.84
https://doi.org/10.1177/0962280218764193
https://doi.org/10.1177/0962280218764193
https://doi.org/10.1007/s10342-010-0434-8
https://doi.org/10.1007/s10342-010-0434-8
https://doi.org/10.1007/s00468-017-1593-8
https://doi.org/10.1007/s00468-017-1593-8
https://doi.org/10.1016/j.foreco.2016.01.040
https://doi.org/10.1016/S0378-1127(00)00301-7
https://doi.org/10.1016/S0378-1127(00)00301-7
https://doi.org/10.81043/aperta.37799
https://doi.org/10.81043/aperta.37799
https://doi.org/10.1016/j.ecolind.2022.109322
https://doi.org/10.1139/X07-104
https://doi.org/10.1016/j.foreco.2010.01.035
https://doi.org/10.1007/s13595-021-01092-x
https://doi.org/10.1007/s13595-021-01092-x
https://doi.org/10.1111/j.1744-7909.2006.00294.x
https://doi.org/10.1007/s13595-018-0738-2
https://doi.org/10.1007/s13595-018-0738-2
https://doi.org/10.1016/j.foreco.2005.04.025
https://doi.org/10.1016/j.foreco.2005.04.025
https://doi.org/10.1016/j.dendro.2020.125743
https://doi.org/10.1016/j.dendro.2020.125743
https://doi.org/10.1016/0378-1127(84)90068-9
https://doi.org/10.1093/forestscience/56.6.515
https://doi.org/10.1093/forestscience/56.6.515
https://doi.org/10.1198/016214504000000980
https://doi.org/10.1198/016214504000000980
https://doi.org/10.1007/s00468-021-02220-w
https://doi.org/10.1016/j.foreco.2021.119918
https://doi.org/10.1016/j.foreco.2021.119918
https://doi.org/10.1093/forestry/cpu025
https://doi.org/10.5558/tfc2017-020
https://doi.org/10.5558/tfc2017-020
https://doi.org/10.1093/forestry/cpw022
https://doi.org/10.1139/x03-277
https://doi.org/10.1139/x03-277
https://doi.org/10.1093/forestscience/51.4.334
https://doi.org/10.1093/forestry/cpy043
https://doi.org/10.1093/forestry/cpy043
https://doi.org/10.1016/j.foreco.2019.117815


Page 21 of 21Wang et al. Annals of Forest Science           (2023) 80:11 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Zhao D, Westfall J, Coulston JW et al (2019) Additive biomass equations for slash 
pine trees: comparing three modeling approaches. Can J For Res 49:27–40. 
https://​doi.​org/​10.​1139/​cjfr-​2018-​0246

Zhou Y, Zhang Z, Chen T et al (1989) Accelerating the recovery of forest in the 
burned area in Daxing’an Mountains according to the ecological character-
istics. J North For Univ 17:1–10 (in Chinese)

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1139/cjfr-2018-0246

	Two new methods applied to crown width additive models: a case study for three tree species in Northeastern China
	Abstract 
	Key message 
	Context 
	Aims 
	Methods 
	Results 
	Conclusion 

	1 Introduction
	2 Material and methods
	2.1 Research area and data collection
	2.2 Preparation before modeling
	2.3 Selection of basic models
	2.4 Addition of covariates
	2.5 Non-linear seemingly unrelated mixed-effects model (NSURMEM)
	2.6 Generalized additive model (GAM)
	2.7 Model evaluation

	3 Results
	3.1 Determination of basic models
	3.2 NSURMEM
	3.3 GAM
	3.4 Intraspecific and interspecific variability of crown
	3.5 Fitting evaluation
	3.6 Model validation

	4 Discussion
	4.1 The growth trend of the four CR
	4.2 Remarks on the performance of the models

	5 Conclusion
	Acknowledgements
	References


