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aged Cryptomeria japonica (L. f.) D. Don. 
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Abstract 

Context Understanding tree mortality is critical for sustainable forest management. Long-term tree mortality may 
differ depending on the stand development process and can be influenced by forest management regimes. Logistic 
regression is widely used to explain tree mortality based on site productivity, age, size, and competition. However, 
the explanatory variables are interrelated. Thus, we attempted to explain long-term Japanese cedar tree mortality 
by considering interrelated variables.

Aims The aim of this study was to elucidate the direct and indirect effects of site productivity, age, individual size, 
and competition on the long-term mortality of Japanese cedars.

Methods Data were collected from 5130 even-aged Japanese cedar trees over approximately 50 years. We compared 
each variable between dead and living trees. We then constructed a mortality model using a conventional logistic 
approach and selected the best model for the stepwise methods. Finally, we applied a piecewise structural equation 
model (SEM) to identify these variables’ direct and indirect effects. We compared the conventional logistic model 
and piecewise SEM models and discussed the advantage of applying the SEM models.

Results Annual mortality was approximately 4% in the most fertile stands, increasing gradually with decreasing 
site fertility. Dead tree size and competition status differed according to age and site productivity. Competition, 
individual size, and stand density were selected for the best logistic model (area under the curve (AUC) = 0.74, Brier 
score = 0.042), whereas age and site productivity were not (p > 0.05). The piecewise SEM results showed that age 
and site productivity indirectly affected tree mortality through individual size and stand density (Fisher’s C = 4.569, 
p = 0.102).

Conclusion Long-term Japanese cedar tree mortality can be explained by individual size and competition as direct 
influencing factors and age and site productivity as indirect influencing factors. This indicated that hidden factors 
cannot be explained using the conventional logistic approach. Further studies are required to explore the potential 
factors contributing to tree mortality thoroughly.
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Key message 

Individual size and competition directly affected long-term Japanese cedar (Cryptomeria japonica (L. f.) D. Don.) mor-
tality, whereas age and site productivity indirectly affected the mortality through individual size and competition. This 
result suggested that there are potential factors that could not be explained using a conventional logistic approach.

Keywords Piecewise structural equation model, Logistic approach, Long-term monitoring, Individual-level tree 
mortality

1 Introduction
Understanding tree mortality is critical for sustain-
able forest management. Tree mortality affects forest 
yield, structure, dynamics, habitat, and biodiversity (Til-
man 1994). It is influenced by various factors, such as 
competition (Weiskittel et  al. 2011), disease (Brasier, 
1996), pathogens (Breece et al. 2008), fire (Stephens and 
Moghaddas 2005), and wind damage (Nagel and Diaci 
2006). Tree mortality is classified as regular or irregular 
based on the cause of death (Lee 1971). Regular mortal-
ity is caused by competition, whereas irregular mortality 
is caused by disease, pathogens, and wind damage (Lee 
1971). As irregular mortality results from sudden distur-
bances, it is difficult to predict. Most previous studies 
have focused on regular mortality when modeling tree 
mortality (Weiskittel et  al. 2011), a focus that was also 
adopted in this study.

Tree longevity differs among species, as observed, for 
example, in pioneer, climax, and wood species, which 
have different life strategies (e.g., shade tolerance and 
growth speed) and also vary depending on sites and sil-
vicultural treatments, even for the same species. Old 
trees are often found in harsh environments and poor 
sites, such as high elevations or extremely dry areas 
(Loehle 1988; Das et  al. 2016). Consequently, old trees 
may be smaller than other trees of the same species, or, 
as expressed by age, the largest trees are not the oldest 
(Piovesan and Biondi 2021). However, the social or crown 
class, defined by crown width, tree vigor, and vertical 
stand structure, is widely adapted to even-aged pure for-
ests (Burkhart et al. 2019). In general, suppressed trees in 
even-aged stands are smaller and have a high mortality 
risk because their growth is limited by competition with 
other trees, eventually leading to death (Franklin et  al. 
1987). This implies that even-aged trees die differently in 
their surrounding environments.

Numerous studies have used tree or stand mortality 
models in even-aged stands to describe the underlying 
biological reality. Binomial logistic regression is widely 
used to predict mortality and analyze various factors. 
(Etzold et  al. 2019; Lee and Choi 2019; Ningre et  al. 
2019; Zhang et  al. 2020; Pretzsch et  al. 2022). This sug-
gested that tree mortality rates tend to be higher when 
site productivity is high, trees are young and small, and 

competition is high (Chen et  al. 2008; Kuehne et  al. 
2022). The logistic regression model directly incorpo-
rated these variables as independent mortality factors 
(Cao 2017; Saud et  al. 2022). However, age affects indi-
vidual size; that is, tree size increases with age (Thomas 
2013), and site productivity affects tree size; that is, trees 
grow faster on sites with high site productivity (Nishi-
zono 2010). This indicates that the factors that poten-
tially affect tree mortality are interrelated. The logistic 
approach could predict tree mortality; however, this 
approach, which considers only the direct effect, might 
be insufficient for understanding real tree mortality. 
A different approach that considers the relationships 
between factors is needed to organize the evidence on 
the processes underlying mortality. Piecewise structural 
equation model (SEM) distinguishes direct and indirect 
factors and applies a logistic model (Lefcheck 2016). It is 
expected that this method will not only be able to build a 
prediction model for mortality but also to clarify the rela-
tionship between the explanatory variables, leading to a 
deeper understanding.

The Japanese cedar (Cryptomeria japonica (L.f.) D. 
Don.) is one of the most important species used in Japan’s 
forestry industry. It is characterized by straight stems, 
and the stands are typically planted at the same time. 
Many studies on even-aged Japanese cedar have focused 
on tree growth (Nishizono et  al. 2008; Kitagawa et  al. 
2018). Although these factors are known to affect tree 
mortality over limited periods, their effects on long-term 
tree mortality have not yet been clarified (e.g., Osumi 
et al. 2000; Nishizono et al. 2008; Fukumoto et al. 2022). 
An adequate description of long-term tree mortality can 
assist efforts toward efficient wood productivity and sus-
tainable forest management.

Our main objective was determining how interrelated 
variables, such as site productivity, age, individual size, 
and competition, influence long-term Japanese cedar 
mortality. First, we used the collected data to compare 
the variables of dead and living trees. We then con-
structed a mortality model using a logistic approach to 
identify the variables that directly affected tree mortality. 
Finally, piecewise SEM was used to identify their rela-
tionships with direct or indirect effects on tree mortality. 
From these results, we clarified (1) how site productivity, 
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age, individual size, and competition affect tree mortal-
ity and (2) the advantage of applying the logistic model 
through the SEM model rather than a simple logistic 
model.

2  Materials and methods
2.1  Data collection
The data were collected from four study sites located 
in the Shikoku region, western Japan (Fig. 1), where the 
mean annual temperature is 16.2 °C and the mean precip-
itation is 1322.5 mm/year. The study sites were national 
forests located in Asagihara (Site A), Nishimatahigashi-
mata-yama (Site B), Nakanokawa-yama (Site C), and 
Kudarukawa-yama (Site D) (Fig. 1, Table 1 ) (Fukumoto 
et al. 2022). The soil type in all sampling plots was brown 
forest soil. These sites were originally established to study 
the effects of thinning and initial planting density on the 
growth of Japanese cedar. The trees were planted at each 
site between 1950 and 1964. Bare root seedlings were 
planted individually on hill slopes using a hoe, and the 
same tillage treatment was conducted in all plots. Two to 
six study plots with areas ranging from 350 to 2270  m2 
were established between 1960 and 1972. In total, there 
were 16 study plots in the study sites (Fig. 1 and Table 1 ). 
Stand densities ranging from 1308 trees/ha to 5250 trees/
ha were established at each study site. There were seven 
high-density plots (< 3000 trees/ha) and nine low-density 
plots (> 3000 trees/ha) during the first measurement. The 
first measurements were obtained when the plots were 
10–27 years old. A census was carried out approximately 

every five years, and the measurements were repeated 
five to ten times. The site index (SI) values for each plot 
ranged from 15.6 to 27.7 m. In this study, the SI was cal-
culated by measuring the upper mean tree height (250 
trees/ha) of 40-year-old trees in each plot (West 2015). 
There were four high SI plots (SI > 25), six middle SI plots 
(20 < SI < 25), and six low SI plots (SI < 20).

The study sites had thinned and unthinned plots, with 
the former being thinned to suppress trees a maximum 
of two times over approximately 60 years. Residual tree 
diameter at breast height (DBH) and height were meas-
ured in each plot during each census. DBH was measured 
for all trees in each plot, with the breast height located 1.2 
m above the ground and marked with a line. The heights 
of approximately 30 randomly selected trees were meas-
ured in each plot, and the heights of the remaining trees 
were estimated using the Näslund equation (Nigul et al. 
2021). The Blum-Leisse instrument was used to measure 
height before 2000, whereas the Vertex III (Haglöf Swe-
den AB, Långsele, Sweden) was used thereafter. The dead 
and thinned trees were recorded during each field meas-
urement period. Tree mortality was represented by either 
0 (dead trees) or 1 (living trees). The measurement data 
of dead trees used previously recorded data because the 
size of the dead trees was not measured. In total, we col-
lected data from 5130 trees.

2.2  Measurement of each influencing factor for both dead 
and living trees

We obtained the mean values of each factor for dead 
and living trees at sites with different productivity levels 
and age classes to clarify the effects of site productiv-
ity, age, size, and competition on dead and living trees. 
We then defined site productivity levels as high (SI > 25), 
middle (20 < SI < 25), and low (SI < 20). Similarly, age was 
classified as older (age > 50), mature (30 < age < 50), or 
young (age < 30). First, the mean mortality of the differ-
ent classes was calculated. We also calculated the mean 
DBH and competition index for living and dead trees in 
the different classes and then applied a t-test to compare 
each factor between dead and living trees.

2.3  Individual mortality model
We applied a generalized linear mixed-effects model 
with a logistic function to our dataset to model the mor-
tality rate of individual trees. Because the intervals dif-
fered by varying degrees between the censuses, we used 
an Exposure method based on Shaffer (2004). The expo-
sure model is a modified logistic regression incorporating 
time interval t into the link function. The details of this 
method are provided in Shaffer (2004). The probability 
mortality rate MI ,i,j of the subject tree i in the Ith plot of 
the jth measurement is expressed as

Fig. 1 Locations of permanent sampling sites used for investigating 
long-term cedar mortality in western Japan. In total, 16 permanent plots 
were established. Site A: Asagihara, Site B: Nishimatahigashimata-yama, 
Site C: Nakanokawa-yama, and Site D: Kudarukawa-yama. The number 
indicates plot No (c.f. Table 1). The solid line indicates a difference in initial 
planting density, and the dashed line indicates the plots established 
at different slopes
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where AgeI ,j is the stand age of the Ith plot of the jth 
measurement; DBHI ,i,j is the DBH value of subject tree i 
in the Ith plot of the jth measurement; SII is the SI at the 
Ith plot;DI ,j is the stand density of the Ith plot in the jth 
measurement; and BALI ,i,j (basal area of trees larger than 
the subject tree) represents the distance-independent 
competition indexes. BAL is expressed as:

where BALI ,i,j is the sum of the basal area of the trees 
competing against subject tree i in the Ith plot of the jth 
measurement; DBH2

c is the sum of the basal area of the 
competition trees with DBH values higher than those of 
the subject tree i in the Ith plot of the jth measurement 
(Tenzin et  al. 2017); a1 − a5 are individual parameters; 
and ϕa,I is a normally distributed random parameter for 
the Ith plot. AgeI ,j , SII , and DI ,j were stand-level factors 
(n = 16), whereas BALI ,i,j and DBHI ,i,j were tree-level fac-
tors (n = 5130). We then used the data for all dead and 
living trees for statistical analysis and estimated each 
parameter using the lme4 package in R v.4.1.3. (Bates 
et al. 2015; R Core Team 2022).

Akaike’s information criterion (AIC) and the area 
under the curve (AUC) were used to select explanatory 
variables and evaluate model performance, respectively 
(Godeau et  al. 2020; Hanley and McNeil 1982). The 
model with the lowest AIC was defined as the best model. 
The coefficient values were used to evaluate whether the 
explanatory variables positively or negatively affected 
tree mortality. AUC values were calculated by drawing 
a receiver operating characteristic curve (Pencina et  al. 
2008) and ranged from 0 to 1, with 1.0 indicating per-
fect distinction. In this study, we calculated AUC values 
using only fixed-effect variables. Similarly, we calculated 
the Brier score (Brier 1950), which approached zero 
as the model accuracy increased. We used the pROC 
(Robin et  al. 2011) and DescTools (Signorell 2020) soft-
ware packages to calculate the AUC and Brier scores, 
respectively.

2.4  Path analysis
SEM allows to model multivariate relationships by com-
bining two or more structural models. This approach is 
widely used to quantify ecological systems and is a useful 
tool for quantifying the direct and indirect effects on tar-
get variables. Path analysis was used to assess the direct 

(1)MI ,i,j+1 = 1−
1

1+ exp(−b1)

t

,

(2)
b1 = a1AgeI ,j + a2BALI ,i,j + a3DBHI ,i,j + a4SII + a5DI ,j + ϕa,I ,

(3)BALI ,i,j =
∑ π

4
DBH2

c ,

and indirect relationships between predictors and tree 
mortality. We then adapted piecewise SEM using the R 
package for piecewise SEM (Lefcheck 2016). Piecewise 
SEM is based on the traditional SEM and can incorporate 
a wide model structure, distribution, and assumptions. 
We constructed piecewise SEMs based on the pre-anal-
ysis, and the best model was selected using AIC, p-val-
ues, and Fisher’s C statistics (Lefcheck 2016). The models 
were as follows:

The response variables included DBH, stand density, 
and mortality. Individual size ( DBHI ,i,j ) and stand den-
sity ( DI ,j ) were selected as the key response variables for 
mortality ( MI ,i,j+1) . ϕc,I , ϕd,I and ϕe,I are normally dis-
tributed random parameters for the Ith plot. We assumed 
that (1) DBH is positively affected by age and negatively 
affected by BAL and stand density; (2) stand density is 
negatively affected by age, BAL, and DBH; and (3) mor-
tality is positively affected by BAL, SI, and stand den-
sity, and negatively affected by age and DBH. Equations 
(4) and (5) follow a normal distribution, whereas Eq. (6) 
follows a binomial distribution with Exposure methods. 
Equations (4) and (5) were constructed using the linear 
mixed model via the nlme package (Pinheiro et al. 2021), 
whereas Eq. (6) was constructed using glmm [general-
ized linear mixed model] in the lme4 package (Bates 
et  al. 2015). All response variables were standardized 
using mean and variance. Next, we calculated the effect 
of each predictor on the response variable using p-values 
and Fisher’s C statistics (Lefcheck 2016), with p > 0.05 
and a small Fisher’s C indicating a good model fit. We 
also calculated the marginal and conditional R2 values to 
evaluate the accuracy of Eqs. (4) and (5) (Nakagawa and 
Schielzeth 2013). When piecewise SEM detects variables 
that indirectly affect tree mortality, it indicates that some 
variables cannot be represented using the usual logistic 
approach. In this case, we concluded that the SEM has an 
advantage over conventional logistic models.

3  Results
3.1  Effect of each factor on mortality
The mean mortality rate was the highest in young trees in 
the high SI class (4.5%), and the mean mortality of mature 

(4)DBHI ,i,j = c1AgeI ,j + c2BALI ,i,j + c3SII + ϕc,I ,

(5)
DI ,j = d1AgeI ,i,j + d2BALI ,i,j + d3DBHI ,i,j + ϕd,I ,

(6)MI ,i,j+1 = 1−

(

1

1+ exp(−b′1)

)t

,

(7)
b1′ = e1AgeI ,j + e2BALI ,i,j + e3DBHI ,i,j + e4SII + e5DI ,j + ϕe,I ,
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and older plots was 3.3% Fig.  2 (a). The mean mortal-
ity rate was highest in mature trees (5.8%) and lowest 
in young trees (0.2%) in the middle SI class. The mean 
mortality rate was lowest in young trees (1.3%), whereas 
the rates for mature and older trees were 3.9% and 2.7%, 
respectively, in the low SI class. The mean mortality rate 
differed widely with the SI in young trees, whereas it 
remained constant in older trees, regardless of the SI.

There was a significant difference in mean BAL 
between living and dead trees in all age classes in the 
high SI class (p < 0.001; Fig.  2(b)), and the mean BAL 
was larger in dead trees (8.1–11.8) than in living trees 
(4.1–7.2). There was a large difference in the mean BAL 
between living and dead trees in the high SI class, regard-
less of age. In the middle and low SI classes, there was 
no significant difference in this parameter between the 
living and dead trees at maturity (p > 0.05). In the middle 
SI class, the mean BAL of living trees ranged from 4.9 to 
10.0, and that of dead trees ranged from 6.1 to 13.7, while 

in the low SI class, it ranged from 1.8 to 7.1 in living trees 
and from 2.9 to 8.5 in dead trees.

The mean DBH of dead trees was significantly 
lower than that of living trees in all SI and age classes 
(p < 0.001; Fig. 2 (c)). It ranged from 10.4 to 22.4 cm in 
the high SI class and from 9.6 to 16.9 cm in the mid-
dle SI class, while it ranged from 3.6 to 9.7 cm in the 
low SI class and was smaller than that in the other SI 
classes. In addition, it reached 10 cm in younger ages in 
the high and middle SI classes and in older ages in the 
low SI class.

3.2  Best model for estimating long‑term mortality 
in Japanese cedar with the conventional logistic model

BAL, DBH, and D were selected using a stepwise AIC, 
whereas age and SI were excluded (Table 2). The coef-
ficients of the three parameters were 1.210, 2.471, and 
1.549, and their SE ranged from 0.113 to 0.158. BAL 
had a positive effect on long-term mortality, whereas 

Fig. 2 Comparison of the variables in all study plots and field surveys for different site index (SI) and stand age classes; (a) mean mortality rate, 
(b) basal area of trees larger than the subject tree (BAL), (c) diameter at breast height (DBH). SI classes were defined as high (SI > 25), middle 
(20 < SI < 25), and low (SI < 20). Age classes were defined as older (age > 50), mature (30 < age < 50), and young (age < 30). The error bar indicates 
standard error. **** indicates a significant difference (t-test, p < 0.001). The error bar indicates the standard deviation

Table 2  Estimation of long-term mortality parameters in Japanese cedar using the glmm approach as described in Eq. (2)

SE Standard error, D Stand density

Parameters Description Estimate SE p value AUC Brier score

α0 Intercept 6.335 0.341 < 0.01 0.74 0.042

α1 Age − 0.296 0.165 0.073

α2 BAL 1.210 0.158 < 0.001

α3 DBH − 2.471 0.113  < 0.001

α4 SI − 0.020 0.598 0.973

α5 D − 1.549 0.129 < 0.001
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DBH and D had negative effects. By contrast, the SE 
values for age and SI were 0.165 and 0.598, respectively. 
The AUC and the Brier score were 0.74 and 0.042, 
respectively.

3.3  Effect of predictors on tree mortality 
with the piecewise SEM

The piecewise SEM results showed that the models were 
well-fitted (Fisher’s C = 4.569, p = 0.102). First, DBH was 
affected by age, BAL, and SI, with SE values ranging from 
0.0023 to 0.0935 (Table  3 and Fig.  3). The coefficient 
values of these three parameters were 0.974, 0.751, and 
0.846, respectively. Additionally, the marginal R2 and con-
ditional R2 were 0.79 and 0.90, respectively. D was nega-
tively affected by age, BAL, and DBH (marginal R2 = 0.09, 
conditional R2 = 0.91), with SE ranging from 0.0036 to 
0.0040. The coefficient values of these three parameters 
were − 0.191, − 0.016, and − 0.095, respectively. Finally, 
the mortality rate was affected by BAL, DBH, and D 
(cf. the previous paragraph). BAL had a positive effect, 
whereas DBH and D negatively affected the mortality 
rate. Age and SI indirectly affected tree mortality rates 
through DBH and D (Fig. 3).

4  Discussion
At sites with high productivity, the mortality rate was 
higher in the younger age group than in the other SI 
classes (Fig.  2 (a)). A large difference in the basal area 
of trees larger than the subject tree (BAL) was observed 
between living and dead trees, indicating high competi-
tion in the stands (Fig.  2 (b) ). Conversely, the mortal-
ity rate gradually increased with age at sites with low 
productivity. This suggested that stand development 
is slower in sites with low than with high productivity, 
which is consistent with the results of a Pretzsch et  al. 
(2023). Moreover, BAL and DBH values showed that the 

suppressed trees had died (Fig. 2 (b)and (c) ). One factor 
identified as having the highest mortality risk is limited 
light (Zuleta et al. 2022), thus small trees are at high risk. 
These results suggested that tree death occurred at dif-
ferent ages and under different competition conditions, 
even though the DBH remained the same.

The logistic model results showed that tree mortality 
rate was affected by competition and tree size but not 
by age and site productivity (Table  2). These results 
indicate that Japanese cedar tree mortality can be 
explained by individual size and competition with con-
ventional logistic approaches. Competition had a posi-
tive effect and individual size negatively affected tree 
mortality. This indicated that tree mortality tended to 
increase with more intense competition and smaller 
tree sizes. This result supported the general trend (e.g., 
Saud et  al. 2022). Our results also showed that DBH 
was the most critical variable for mortality because its 
coefficient was the largest in Eq.  7 (Table  3). Takata 
and Kobayashi (1983) indicated that individual tree 
size plays a more important role in mortality than does 
intraspecific competition in Japanese cedar growth. 
Many studies have also indicated that individual size 
is an expected high interpretability factor for the mor-
tality model; therefore, sometimes tree age has been 
replaced by individual size when stand or tree age is 
not available, such as in mixed or uneven-aged stands 
(e.g., Etzold et al. 2019). Moreover, tree mortality was 
lower with high stand density, and this result showed a 
different trend in other studies (e.g., Yang et al. 2024). 
Loehle (1988) showed that tree growth declined to 
extend longevity at sites with limited water and nutri-
ent availability. Based on this theory, Chao et al. (2008) 
indicated that the negative correlation between stand 
density and mortality reflects a fundamental trade-off 
between resource acquisition and investment survival. 

Table 3  Parameters and fit statistics for predicting long-term mortality in Japanese cedar using the piecewise structural equation 
model based on Eqs. (4, 5, 6 and 7)

Response variables Parameters Predictor Estimate SE p value Marginal R2 Conditional R2 AUC 

DBH c1 Age 0.974 0.0023 < 0.001 0.79 0.90

c2 BAL − 0.751 0.0025 < 0.001

c3 SI 0.846 0.0935 < 0.001

Stand density d1 Age − 0.191 0.0043 < 0.001 0.09 0.91

d2 BAL − 0.016 0.0036 < 0.001

d3 DBH − 0.095 0.0040 < 0.001

Mortality e1 Age − 0.296 0.1650 0.073 ‑ ‑ 0.72

e2 BAL 1.210 0.1581 < 0.001

e3 DBH − 2.471 0.1130 < 0.001

e4 SI − 0.020 0.5980 0.973

e5 D − 1.549 0.1289 < 0.001
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In this study, tree mortality was lower at sites with low 
productivity and high stand density. Therefore, stand 
density may have negatively affected tree mortality in 
the logistic model. In contrast, age and site productiv-
ity were not significant variables in our logistic model 
(Table 2). This indicated that age and site productivity 
are insufficient for directly describing the long-term 
mortality of Japanese cedar trees. Many studies have 
directly inserted age and site productivity as explana-
tory variables for the logistic mortality model (e.g., 
Zhang et al. 2020), and these were significant variables 
for their models (Timilsina and Staudhammer 2012; 
Cruickshank 2017; Cao 2019). However, individual 
size and competition status differed by age and site 
productivity (Fig.  2), and the usual logistic approach 
might not sufficiently explain tree mortality under dif-
ferent stand development phases.

The piecewise SEM results showed that tree mortality rate 
was explained by the direct effects of tree size, competition, 
and stand density and the indirect effects of site productivity 
and age (Fig. 3). This indicated that tree mortality increases 
with smaller tree sizes and intense competition; however, 
tree size and competition are affected by site productivity 
and age. Pretzsch et  al. (2022) indicated that heterogene-
ity in size structure increases in poor sites because of high 
competition and small tree death at rich sites. Loehle (1988) 

pointed out that the relative growth rate of trees decreases 
to expand their life span in poor sites, and the ratio of pho-
tosynthesis to respiration decreases due to increased respi-
ration demands from the supporting tissue. These results 
suggested that piecewise SEM models adequately reflect 
the different situations in which tree mortality occurs at dif-
ferent site productivities and ages. Conventional logistics 
approaches overlook the indirect factors of site productivity 
and age. If we analyzed tree mortality using data collected 
from long-term, varied locations and silvicultural treat-
ments, the piecewise SEM model would have an advantage 
in understanding tree mortality. Piecewise SEM has been 
widely used for factor analyses recently (Stenegren et  al. 
2017; Bomfim et  al. 2021). This approach can identify the 
relationships among interrelated variables (Lefcheck 2016) 
and can potentially be applied to various factor analyses. 
This study focused on even-aged pure stands. Similar results 
may not be obtained for other forest types, such as mixed- 
or uneven-aged forests. Therefore, future studies should 
apply these models to various forest types.

5  Conclusion
This study clarified that the interrelated variables of site 
productivity, age, individual size, and competition influ-
ence long-term Japanese cedar mortality. The collected 
data showed that dead tree size and competition status 

Fig. 3 Direct or indirect relationship between tree mortality and each of the following factors: SI, age, BAL, DBH, and stand density. Arrows indicate 
unidirectional effects among variables. The red and black arrows indicate positive and negative effects, respectively. The gray-dotted line indicates 
non-significant effects (p > 0.05). The values in the figure show the coefficients of each parameter based on the piecewise structural equation model 
(Table 2)
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varied depending on age and site productivity. However, 
age and site productivity were not significant variables 
in the conventional logistic regression model. They indi-
rectly influenced long-term Japanese cedar tree mortal-
ity through individual size and competition. Our findings 
highlighted the fact that important variables are over-
looked in the conventional logistic approach. Therefore, 
piecewise SEM has an advantage when adapted to factor 
analysis. The explanatory variables corresponding to the 
data should be carefully selected when describing and 
understanding tree mortality.
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