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Abstract 

Key message Cocoa agroforestry systems (AFS) in West Africa represent an underexplored yet promising source of tim‑
ber. Within these systems, species can reach a 50‑cm diameter as early as 14 years of age. Naturally regenerated trees 
grow 10% faster than planted ones and develop a 43% greater bole volume. These findings underscore the high timber 
potential of cocoa AFS and confirm natural regeneration as a superior strategy for tree renewal and wood production.

Context In West Africa, where over 80% of original forests have been converted to agriculture, finding alternative 
timber sources is essential. Agroforestry, prevalent across the region, offers a potential solution.

Aims This study assesses the timber production potential of trees in cocoa agroforestry systems in Côte d’Ivoire.

Methods In 150 cocoa agroforestry plots, we (i) modelled the diameter growth of forest tree species; (ii) developed 
specific allometric models for cocoa AFS; and (iii) evaluated the effect of tree origin (natural regeneration vs. planta‑
tion) on growth trajectories, allometry, and bole volume.

Results Trees can reach a diameter of 50 cm as early as 14 years of age, and a bole height of up to 8.83 m at this 
diameter. Naturally regenerated trees grow 10% faster annually than planted trees, reaching their minimum logging 
diameter up to 10 years earlier, and have a 43% greater bole volume.
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1 Introduction
In a global context where the demand for tropical tim-
ber is constantly increasing (Chimeli et  al. 2012), natu-
ral forests, which provide the majority of this resource, 
are under unprecedented pressure (FAO 2020). In West 
Africa, this pressure is exacerbated by real estate develop-
ment (driven by high population growth) that fuels a very 
strong local demand for construction timber (Uzu et al. 
2022). This demand completely exceeds the supply capac-
ities of production forests (Louppe and Ouattara 2013), 
in a context where over 80% of the original forest mass 
has been lost in favour of agricultural development (Ale-
man et al. 2018; Traoré et al. 2024). Thus, it is imperative 
to seek alternative sources of production to meet regional 
needs and uses and to ensure the sustainability of the 
timber sector and the people who depend on it (Tsanga 
et al. 2020). Large-scale tree planting has long been seen 
as an ideal solution to meet the needs for tropical tim-
ber. For example, 45% of the national commitments made 
under the Bonn Challenge, an international goal aiming 
to restore 350 million hectares of land by 2030 (Verdone 
and Seidl 2017), involve multiplying tree plantations 
(Lewis et  al. 2019). However, large-scale analyses show 
that these projects, in addition to their high costs and 
lack of long-term funding (Brancalion and Holl 2020), 
have often been much less successful than expected, or 
even outright failed (Brancalion and Holl 2020; Holl and 
Brancalion 2020), and have also led to numerous territo-
rial conflicts (Gerber 2011).

Multiple studies highlight the potential for timber 
production outside of natural forests and dedicated 
plantations. Two systems appear particularly promis-
ing in West Africa: secondary forests from agricultural 
fallows (Doua-Bi et  al. 2021) and agroforestry systems 
(Tschora and Cherubini 2020). Developing timber sup-
ply from these systems can represent a viable alternative 
to help resolve the local timber deficit while (i) diversify-
ing farmers’ income sources (Kinyili et al. 2020; Kouassi 
et  al. 2023a) and (ii) ensuring more sustainable use of 
agricultural lands (Plieninger et  al. 2020). In this con-
text, numerous agroforestry promotion initiatives have 
emerged in the West African cocoa production area (Zo-
Bi and Hérault 2023), which accounts for nearly 70% of 
global cocoa production. Cocoa agroforestry consists in 
cultivating cocoa trees under the shade of larger trees. 

At low-to-intermediate shade levels, this practice can 
help reduce disease prevalence, buffer climate extremes, 
mitigate climate change and conserve biodiversity, while 
maintaining cocoa production levels (Blaser et al. 2018). 
Thus, the agroforestry promotion initiatives primarily 
aim to achieve sustainability and long-term stabilization 
of cocoa production (Carimentrand 2020). By doing so, 
the establishment of new deforestation fronts to seek fer-
tile soils would be avoided, thereby reducing pressure on 
the few remaining forests (Ruf et al. 2015).

Despite all these agroforestry promotion activities, 
a significant limitation to the adoption of agroforestry 
practices remains a lack of knowledge about the actual 
productive potential of timber trees in cocoa fields and 
thus about the added value these trees can generate for 
the farmer (Sonwa et al. 2014). Indeed, while this produc-
tive potential is well known in natural forests (e.g., Zobi 
et  al. (2009)) or in dedicated plantations (e.g., Hérault 
et  al. (2020, 2021)), it is not transferable to cocoa fields 
where the biophysical environment is very different. 
There are two main reasons for this: (i) the growth tra-
jectories of trees in cocoa fields are unknown and are 
expected to be very different in open, low-competition 
environments (cocoa fields) than in high-competition 
forest environments (Rozendaal et  al. 2020; ii) allomet-
ric equations, necessary for determining the commercial 
volumes of trees, should also be different from those used 
in forests for several reasons. First, trees in cocoa fields 
receive more light and have more space to extend their 
branches laterally, unlike trees in dense forests that grow 
vertically to access light (Harja et al. 2012). Second, trees 
in cocoa fields are more exposed to wind, causing them to 
develop sturdier trunks and more extensive root systems 
to remain stable (Ennos 1997). Improving knowledge on 
growth trajectories and tree architecture in agroforestry 
contexts is thus urgent to correctly quantify the produc-
tive potentials of timber trees.

The actual implementation of agroforestry promo-
tion activities often involves the massive distribution 
in cocoa fields, by industries and through cooperatives 
or development NGOs, of young trees raised in nurser-
ies (IDH 2021). However, recent results suggest that the 
survival rate and growth performance of these planted 
trees are low and that the natural regeneration of these 
same tree species in the fields could offer much better 

Conclusion Natural regeneration is a more effective strategy than planting for tree renewal in cocoa AFS, providing 
faster growth, greater timber volumes, and significant potential for sustainable forestry management and meeting 
regional timber demands.

Keywords Timber wood, Growth trajectories, Silvicultural management, Natural regeneration, Cocoa agroforestry, 
West Africa
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performance for forest cover restoration (Kouassi et  al. 
2023a; Sanial et al. 2023). Indeed, planted trees, initially 
raised under controlled nursery conditions, seem less 
adapted once transplanted into the natural environment 
and less competitive than spontaneous recruits, making 
them more vulnerable to various stresses (Preece et  al. 
2023). On the other hand, naturally regenerated trees 
are subjected from the start to intense selection pressure 
exerted by the local environment and the farmers them-
selves. This selection pressure favours, among the hun-
dreds or thousands of seedlings germinating each year 
in the fields, the best-adapted and most performant indi-
viduals over time (Sanial 2019). Naturally regenerated 
trees are thus recognized for their more vigorous growth 
compared to planted trees, due to their strong adapta-
tion to the local parcel conditions (Werden et al. 2018), 
which also improves their long-term survival capaci-
ties (Aubry-Kientz et al. 2015). In conclusion, while the 
shock effect of planting seems evident in the early stages 
of tree development, improving our knowledge on the 
long-term consequences of choosing a “reforestation” 
technical itinerary, i.e., planting or natural regenera-
tion, is necessary to determine which timber production 
strategy is most optimal.

The main objective of our study was to assess the tim-
ber production potential of trees in cocoa agroforestry 
systems (AFS) in Côte d’Ivoire (West Africa). Specifi-
cally, we estimated the time required for trees to reach 
their minimum logging diameter (MLD) and the corre-
sponding volume at this stage. MLD values used in this 
study are legally defined thresholds below which logging 

is prohibited. These values correspond to the diameter 
at which approximately 80% of trees of a given species 
reach a stage of abundant and regular fruiting (Sodefor, 
2017). This criterion ensures the sustainable renewal of 
tree populations. We also assessed the effect of the origin 
of the trees, be they from natural regeneration or (trans)
plantation, on this production potential. To achieve these 
objectives, we (i) modelled the diameter growth of forest 
species identified as potentially suitable for wood pro-
duction in cocoa AFS; (ii) established specific allomet-
ric models for trees in cocoa AFS to assess their volume 
when they reach their minimum logging diameter; and 
(iii) evaluated the effect of spontaneous or (trans)planted 
origin of trees on their growth trajectories, allometry, 
and thus on their logging volume trajectories. The results 
of this study provide key indicators for establishing silvi-
cultural management technical itineraries for associated 
trees in cocoa AFS based on their actual performance, 
thereby encouraging decision-makers to better promote 
timber trees associated to cocoa production.

2  Material and methods
2.1  Sampling design
2.1.1  Study area
Our study covers the cocoa production area of Côte 
d’Ivoire (Fig.  1). This area is characterised by an annual 
precipitation gradient varying from 2500 mm in the 
south to 1100 mm in the north, and by an average annual 
temperature of around 26.5  ◦ C. The area spans from 
evergreen forests in the south to semi-deciduous forests 
in the north.

Fig. 1 Location of the 15 study sites across a gradient of climate and vegetation in central and southern Côte d’Ivoire
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2.1.2  Sampling plots
A total of 150 plots were set up, grouped into 15 sites of 
10 plots each. Each of these plots represents a manage-
ment unit of the farmer or his manager. They range in 
size from 0.3 to 5  ha and together cover 240.5 ha. Our 
sampling covers a gradient of structural complexity: from 
low tree density AFS with a single stratum to complex 
AFS with high tree density and multiple strata.

2.1.3  Sampling data
We carried out an exhaustive tree inventory in our plots 
between March 2021 and November 2022. We measured 
the diameter at breast height (DBH) and bole height (BH) 
of all trees with a DBH of at least 10 cm. We identified 
trees to the species level following the Taxonomic Name 
Resolution Service as implemented in the R BIOMASS 
package (Réjou-Méchain et  al. 2017). We also recorded 
their origin based on farmer declarations as remnant 
(pre-existing before cocoa farm conversion), spontane-
ous (naturally regenerated), or (trans)planted (intention-
ally planted or transplanted). The farmer also provided 
the age of spontaneous and (trans)planted trees (the age 
of remnant trees being unknown). Finally, we measured 
successive diameters along the bole (every metre) of a 
subset of 200 trees using a Bitterlisch relascope to calcu-
late their bole volume.

A total of 11,999 trees belonging to 284 species were 
inventoried (a summary of this inventory is presented 
in Table S1; Kouassi et al. (2024)). In this study, we only 
considered the species listed in the national list of timber 
species (Sodefor 2017), or the species listed as commonly 
used by Ivorian cocoa farmers for construction purposes 
(Dago et al. 2025); Table S1 in Kouassi et al. 2024). Also, 
here we only consider spontaneous and (trans)planted 
trees while excluding remnant trees. Remnant trees are 
expected to have different development trajectories as 
they have grown, at least in part, in a forest environment. 
This approach ensures our analysis focuses solely on trees 
that developed entirely within cocoa agroforestry condi-
tions, free from prior forest influence. Finally, we only 
consider species with at least 5 individuals. Our dataset 
thus includes a total of 4634 trees belonging to 59 spe-
cies, including 2530 spontaneous trees and 2104 (trans)
planted trees.

For the sake of clarity and simplicity, we focus in the 
main text on presenting the analyses and results for 23 
species identified as the most suitable for timber pro-
duction in cocoa agroforestry systems (Kouassi et  al. 
2023b). These species were identified based on their good 
cylindricity, straightness, and overall health, key indica-
tors of high-quality commercial timber. A summary of 
the dendrometric characteristics of these 23 species is 
presented in Table  1. A summary of the dendrometric 

characteristics of the other 36 species is presented in 
Table S2 of Kouassi et al. (2024).

2.2  Modelling
We developed three models to assess the wood produc-
tion potential of trees in cocoa agroforestry systems, 
using the sampled trees as the basis for parameter esti-
mation. Rather than constructing separate models for 
each species, we incorporated species effects directly 
into specific model parameters to account for interspe-
cific variation within a unified framework. Specifically, 
we modelled (i) diameter growth trajectories of trees as a 
function of their age (Eq. 2), (ii) the relationship between 
tree diameter and bole height (Eq. 4), and (iii) commer-
cial volume of trees as a function of their diameter and 
bole height (Eq. 5). Each model includes an origin effect 
to assess the differences between spontaneous and (trans)
planted trees. We estimated the model parameters in a 
Bayesian framework using Stan (Stan Development Team 
C et al. 2018; Carpenter et al. 2017) in the R environment 
(R Core Team 2021). The Bayesian approach offers great 
flexibility and transparency in modelling complex phe-
nomena and uncertainty. It makes it possible to incorpo-
rate prior knowledge (priors) and to obtain probability 
distributions (posteriors) for model parameters, from 
which credible intervals are derived. We provide the 
STAN code in Kouassi et al (2024).

2.2.1  Diameter growth model
We base our analysis on the conceptual framework devel-
oped by Hérault et al. (2011) and Schmitt et al. (2023):

The diameter of an individual tree i of species s at age a 
can be calculated as the sum of its initial diameter at age 
1 DBH(i,s,1) plus the sum of all annual growth rates (AGR) 
from age 1 to age a− 1:

Using our field data, we modelled the diameter growth 
trajectories of trees as a function of their age as follows:

with

• DBH(i,s,1) : the initial diameter, set to 1 cm, assuming 
farmers notice trees from this size.

• σg : the dispersion parameter of the log-normal distri-
bution.

(1)DBHi,s,a = DBHi,s,1 +

y=a−1

y=1

AGRi,s,y

(2)DBHi,s,a ∼ LN



log



DBHi,s,1 +

y=a−1
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y=1

AGRi,s,y



, σg
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and where:

with:

• Gmaxs ∼ LN (log(Gmax), σgmax) : the species-specific 
maximum growth potential, following a log-normal 
distribution with parameters Gmax and σgmax . Gmax 
represents the expected maximum growth potential 
for all species and σgmax the dispersion parameter.

• Dopts = θd · Dmaxs : the species-specific diameter 
at which Gmaxs is reached, defined as a function of 
Dmaxs , the maximum diameter observed for each 
species, weighted by θd , a parameter between 0 and 
1. θd ∼ LN

(

log(µθd ), σθd
)

 centred on µθd and dis-
persed according to σθd.

• Ks = θk · wds : the species-specific kurtosis coeffi-
cient defining the width of the growth curve, reflect-
ing ontogenetic variation in growth potential. Ks is 

(3)AGRi,s,y = θsi · θ
O
origin · Gmaxs · exp






−
1

2





log
�

DBHi,s,y

Dopts

�

Ks





2






a linear function of species wood density wds , with 
parameters θk . θk ∼ LN

(

log(µθk ), σθk
)

 centred on 
µθk and dispersed according to σθk.

• θsi ∼ LN (log(1), σsi) : a site effect following a log-
normal distribution with parameters log(1) and σsi . 
Site effects are therefore centred on 1 and dispersed 
according to σsi.

• θOorigin : an origin effect evaluating growth differ-
ence between spontaneous and (trans)planted trees. 
Practically, the origin variable (O) takes the value 1 
for spontaneous trees and 0 for (trans)planted trees. 
Thus, θOorigin represents the annual diameter growth 
rate advantage of spontaneous trees over (trans)
planted trees.

We modelled the diameter growth trajectories with 
a set of 4634 trees (2530 spontaneous and 2104 (trans)
planted) for which age and diameter data were available.

We used this model to predict diameter as a function of 
age (up to age = 100), both for spontaneous and (trans)
planted trees. We also recorded species annual growth 

Table 1 Summary of the dendrometric characteristics and uses of the wood of the 23 species we focus on. MLD, minimum logging 
diameter (cm); DBH: mean [min, max] diameter at breast height (cm); BH, mean [min, max] bole height (m); AGE, mean [min, max] tree 
age (year); WD, wood density from Chave et al. (2009) (g.cm3 ); N_s, total number of spontaneous trees; N_tp, total number of (trans)
planted trees; WOOD USES, T, timber, S, slicing, RP, Rotary peeling, from Prota4u; an asterisk indicates exotic species (Aké‑Assi 2001)

Species name Trade name MLD DBH BH AGE WD N_s N_tp WOOD USES

Alstonia boonei De Wild. EMIEN 60 47.9 [11.0, 143.0] 9.2 [2.0, 34.0] 19.2 [3.0, 50.0] 0.32 47 1 T, S, RP

Amphimas pterocarpoides Harms LATI 70 30.5 [10.0, 77.0] 8.1 [0.9, 29.0] 14.6 [1.0, 41.0] 0.62 57 0 T

Antiaris toxicaria (J.F.Gmel.) Lesch. AKO 50 30.9 [10.0, 101.0] 7.9 [1.5, 23.0] 13.1 [2.0, 41.0] 0.38 93 1 T

Bombax brevicuspe Sprague KONDROTI 60 44.3 [23.0, 109.0] 9.0 [4.5, 28.0] 15.8 [4.0, 50.0] 0.41 10 0 RP

Bombax buonopozense P.Beauv. OBA/KAPOKIER 60 48.6 [11.7, 100.0] 7.3 [1.8, 15.0] 13.9 [3.0, 26.0] 0.32 19 3 T, S, RP

Cedrela odorata L.* CEDRELA* 50 29.6 [10.0, 51.4] 5.9 [2.0, 10.0] 7.5 [3.0, 19.0] 0.45 0 10 T, S, RP

Ceiba pentandra (L.) Gaertn. FROMAGER 80 45.0 [10.9, 140.0] 7.2 [1.5, 25.0] 10.4 [1.0, 27.0] 0.31 43 3 RP

Celtis zenkeri Engl. ASAN 50 38.4 [10.2, 65.2] 9.6 [1.0, 23.0] 16.4 [3.0, 25.0] 0.61 10 0 T

Distemonanthus benthamianus Baill. MOVINGUI 60 28.1 [11.0, 75.0] 5.2 [1.3, 11.0] 15.0 [5.0, 35.0] 0.60 17 0 S

Entandrophragma angolense C.DC. TIAMA 60 23.1 [10.3, 58.3] 8.9 [1.3, 20.0] 12.7 [4.0, 41.0] 0.48 49 0 T, S, RP

Funtumia africana (Benth.) Stapf POUO 50 26.1 [10.1, 69.0] 5.0 [0.8, 15.0] 13.0 [3.0, 30.0] 0.42 45 0 RP

Gmelina arborea Roxb.* GMELINA* 50 18.7 [10.0, 32.7] 5.0 [2.2, 6.0] 3.6 [2.0, 4.0] 0.43 0 10 T, RP

Lannea welwitschii (Hiern) Engl. LOLOTI 60 30.2 [14.0, 89.0] 6.6 [1.3, 20.0] 11.4 [3.0, 41.0] 0.41 34 2 S

Milicia excelsa (Welw.) C.C.Berg IROKO BLANC 60 34.7 [10.8, 76.0] 8.8 [1.7, 21.0] 16.4 [2.0, 40.0] 0.57 67 9 T, S

Milicia regia (A.Chev.) C.C.Berg IROKO ROUGE 60 28.6 [14.9, 76.0] 6.2 [3.0, 14.0] 11.8 [3.0, 41.0] 0.56 21 1 T, S

Parkia bicolor A.Chev. LO 50 21.4 [10.4, 57.0] 3.4 [1.4, 9.0] 9.9 [5.0, 25.0] 0.46 5 4 T, S

Petersianthus macrocarpus (P.Beauv.) Liben ABALE 50 36.5 [16.2, 56.0] 6.0 [2.0, 17.0] 15.5 [4.0, 30.0] 0.68 16 0 S

Piptadeniastrum africanum (Hook.f.) 
Brenan

DABEMA 60 24.5 [10.0, 38.6] 5.8 [2.3, 8.0] 12.8 [5.0, 27.0] 0.61 13 0 T

Pycnanthus angolensis (Welw.) Warb. ILOMBA 60 39.4 [10.2, 79.9] 8.2 [3.0, 21.5] 18.6 [3.0, 50.0] 0.41 77 0 T, RP

Ricinodendron heudelotii (Baill.) Pierre ex 
Heckel

EHO/APKI 60 45.5 [11.6, 141.0] 6.5 [1.9, 20.0] 17.0 [3.0, 50.0] 0.21 31 19 RP

Terminalia ivorensis A.Chev. FRAMIRE 50 35.4 [10.8, 73.2] 8.8 [2.1, 34.0] 14.9 [3.0, 41.0] 0.44 20 9 T, RP

Terminalia superba Engl. & Diels FRAKE 50 26.4 [10.0, 79.0] 7.3 [1.0, 20.0] 9.4 [2.0, 28.0] 0.46 81 120 T, S

Zanthoxylum gilletii (De Wild.) 
P.G.Waterman

BAHE 50 50.0 [17.0, 94.6] 10.0 [1.8, 18.0] 23.2 [7.0, 41.0] 0.69 12 0 T, S
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rate (AGR) at diameter 10 cm and 70 cm for comparison 
with measurements taken in forests in the same region 
(see Discussion section).

2.2.2  Bole height model
We modelled the bole height of individual trees as a func-
tion of their diameter using a Michaelis-Menten model, 
which is commonly applied in ecology for height-diam-
eter relationships (Molto et al. 2014; Huang et al. 1992). 
Our model is specified as:

with:

• BHi,s : the bole height of tree i of species s.
• DBHi,s : the diameter at breast height of tree i of spe-

cies s.
• α : represents the asymptotic bole height.
• β : represents the diameter at which half the asymp-

totic height 
(

BHi,s

2

)

 is reached.
• θs ∼ LN (log(1), σs) : a species effect following a log-

normal distribution with parameters log(1) and σs . 
Species effects are therefore centred on 1 and dis-
persed according to σs.

• θsi ∼ LN (log(1), σsi) : a site effect following a log-
normal distribution with parameters log(1) and σsi . 
Site effects are therefore centred on 1 and dispersed 
according to σsi.

• θOorigin : an origin effect evaluating the difference in 
asymptotic bole height between spontaneous and 
(trans)planted trees. Practically, the origin variable 
(O) takes the value 1 for spontaneous trees and 0 
for (trans)planted trees. Thus, θOorigin represents the 
advantage of spontaneous trees over (trans)planted 
trees in terms of asymptotic bole height.

• σh : the dispersion parameter of the log-normal distri-
bution.

We modelled tree bole height with a set of 4882 trees 
(2629 spontaneous and 2253 (trans)planted) for which 
diameter and bole height data were available.

2.2.3  Bole volume model
We modelled the bole volume of an individual tree i of 
species s as a function of its diameter at breast height 
(DBH) and bole height (BH) (Köhl et al. 2006; Magnussen 
and Reed 2004). Our model is given by:

(4)

BHi,s ∼ LN

(

log

(

θs · θsi · θ
O
origin ·

α · DBHi,s

β + DBHi,s

)

, σh

)

(5)
BVi,s ∼ LN

(

log
(

θs · θ
O
origin · α · DBH

β
i,s · BH

γ
i,s

)

, σv

)

with:

• BVi,s : the bole volume of tree i of species s.
• DBHi,s : the diameter at breast height of tree i of spe-

cies s.
• BHi,s : the bole height of tree i of species s.
• α , β et γ : parameters to be estimated.
• θs ∼ LN (log(1), σs) : a species effect following a log-

normal distribution with parameters log(1) and σs . 
Species effects are therefore centred on 1 and dis-
persed according to σs.

• θOorigin : an origin effect evaluating the difference in bole 
volume between spontaneous and (trans)planted trees. 
Practically, the origin variable (O) takes the value 1 for 
spontaneous trees and 0 for (trans)planted trees. Thus, 
θOorigin represents the advantage of spontaneous trees 
over (trans)planted trees in terms of bole volume.

• σv : the dispersion parameter of the log-normal distri-
bution.

We modelled bole volume with a subset of 200 trees 
(176 spontaneous and 24 (trans)planted) for which bole 
volume, diameter and bole height data were available. 
These trees were selected in the field for there remarkable 
commercial quality: bole height of at least 5 m and good 
health and conformation (Kouassi et al. 2023b). This sub-
set is therefore not representative of all trees in cocoa 
AFS, but rather allows to evaluate the bole volumes that 
can be reached by trees in these systems.

We used this model to predict the bole volume of spon-
taneous and (trans)planted trees as a function of age (up 
to age 100). For that, we predicted DBHi,s as a function 
of age using our diameter growth model (Eq.  2), then 
BHi,s as a function of the predicted DBHi,s using our bole 
height model (Eq.  4), and finally the bole volume using 
these predicted DBHi,s and BHi,s.

We also used this model to predict the bole volume 
of spontaneous and (trans)planted trees as a function of 
DBH (up to DBH = 100 cm). We predicted BHi,s using 
our bole height model (Eq. 4).

3  Results
In this section, we presented the results obtained for the 
23 species identified as the most suitable for timber pro-
duction, as previously mentioned. The parameter values 
and credible intervals for all 59 species considered in this 
study were provided in Tables S3 to S12 of the Supple-
mentary Information (Kouassi et al. 2024).

3.1  Tree diameter growth
On average, the 23 species we focused on reached a 
diameter of 50 cm (smallest MLD value) in 36 years 
(Fig. 2). The fastest growing species was Ceiba pentandra, 
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Fig. 2 Diameter growth and bole volume trajectories of our 23 tree species. Full lines stop at the maximum age recorded for each species. Dotted 
lines extend predictions to age 100. Here, we present the trajectories predicted for spontaneous trees



Page 8 of 15K. Kouassi et al. Annals of Forest Science           (2025) 82:17 

reaching 50 cm in 14 years. The slowest growing species 
was Distemonanthus benthamianus, reaching the same 
diameter in 79 years. The expected maximum annual 
growth potential ( Gmax in Eq. 3) for all species was 8.74 
cm year−1 . On average, the maximum annual growth 
potential occurred at an optimal diameter ( Dopts in Eq. 3) 
of 0.87 cm. In general, species annual growth rates were 
therefore maximum for DBH smaller than 1  cm and 
decreased as DBH increased.

Species annual growth rates (AGR) at DBH = 10 cm 
ranged from 2.28 cm year−1 for Piptadeniastrum afri-
canum to 6.57 cm.yr−1 for Bombax brevicuspe, with 
an average of 3.87 cm year−1 . At DBH = 70 cm, species 
AGR ranged from 0.13 cm year−1 for Distemonanthus 
benthamianus to 1.73 cm.yr−1 for Ceiba pentandra, with 
an average of 0.61 cm year−1 . The model parameter val-
ues and their credible intervals, including the parameter 
values for the 36 additional timber species are presented 
from Table S3 to Table S7 in Kouassi et al. (2024).

3.2  Diameter‑bole height relationship
At 50 cm in DBH (smallest MLD value), the trees 
reached an average bole height of 6.75 m (Fig. 3), rang-
ing from 4.33 m to 8.83 m. The predicted tree asymptotic 
bole height ( α in Eq. 4) was 6.75 m. The species effect θs 
ranged from 0.80 (i.e. − 20%) to 1.64 (i.e. + 64%). Maxi-
mum values at 50 cm DBH were reached by Antiaris 
toxicaria, while minimum values were reached by Parkia 
bicolor. The model parameter values and their credible 
intervals, including the parameter values for the 36 addi-
tional timber species are presented in tables S8 to S10 of 
Kouassi et al. (2024).

3.3  Wood production potential of trees
At age 25 (a commonly used logging age in forest plan-
tations), trees reached a mean bole volume of 1.04 m 3 
(Fig. 2). The fastest growing species was Ceiba pentandra, 
which reached 2.11 m 3 , corresponding to an anhydrous 
wood mass of 630 kg, at age 25. The slowest growing spe-
cies, Distemonanthus benthamianus and Funtumia afri-
cana, reached 0.52 m 3 , corresponding to an anhydrous 
wood mass of 300 kg and 200 kg, respectively, at the same 
age.

At 50 cm DBH (smallest MLD value), tree bole vol-
ume ranged from 0.94 to 1.24 m 3 (Fig. 3). These volumes 
increased to reach 3.11 to 3.53 m 3 for trees 100 cm in 
diameter.

On average, trees reached their MLD at 44.82 years of 
age (Fig. 4). Cedrela odorata reached its MLD first at the 
age of 15, while Entandrophragma angolense reached its 
MLD last at the age of 100. At their MLD, trees had on 
average a volume of 1.37 m 3 . Parkia bicolor, with 0.92 m 3 , 

had the smallest volume, while Ceiba pentandra, with 
2.36 m 3 , had the largest volume. The evaluation of our 
bole volume model (Eq.  5) provided the following allo-
metric equation adapted to predict the bole volume of 
trees in cocoa AFS:

With θo = 1.43 for spontaneous trees and θo = 1 for 
(trans)planted trees (see the next section about the effect 
of tree origin). The model parameter values and their 
credible intervals are presented in Table S11 to Table S12, 
and is presented in Fig. S1 of Kouassi et al. (2024).

3.4  Effect of trees’ origin on their wood production 
potential

In our diameter growth model (Eq.  3),  θo = 1.10 . This 
means that the annual growth rate of spontaneous trees 
is 10% higher than that of (trans)planted trees. As a 
consequence, spontaneous trees reach their MLD 4.76 
years earlier than (trans)planted trees (Fig.  5) on aver-
age. This advantage of spontaneous trees over (trans)
planted trees ranges from 2 years for Bombax buonopo-
zense and Cedrela Odorata to 10 years for Amphimas 
pterocarpoides.

In our diameter growth model (Eq. 3), θo = 1.10 . This 
meant that the annual growth rate of spontaneous trees 
was 10% higher than that of (trans)planted trees. As a 
consequence, spontaneous trees reached their MLD 4.76 
years earlier than (trans)planted trees (Fig.  5) on aver-
age. This advantage of spontaneous trees over (trans)
planted trees ranged from 2 years for Bombax buonopo-
zense and Cedrela Odorata to 10 years for Amphimas 
pterocarpoides.

In our bole volume model (Eq.  5), θo = 1.43 . This 
meant that for a given diameter and a given bole height, 
spontaneous trees were 43% larger in volume than (trans)
planted trees. As a consequence, spontaneous trees 
reached a higher bole volume of 0.43 m 3 on average as 
compared to (trans)planted trees (Fig. 5). This advantage 
in volume ranged from 0.29 m 3 for Funtumia africana 
and Parkia bicolor to 0.71 m 3 for Ceiba pentandra.

Finally, in our bole height model (Eq.  4), θo = 1 , indi-
cating no difference in the diameter-height relationship 
between spontaneous and (trans)planted trees.

4  Discussion
To our knowledge, this study is the first to assess the 
diameter growth and the wood production potential of 
trees in West African cocoa AFS. Our results show that 
trees can reach their MLD as early as 15 years of age for 
bole volumes greater than 0.92 m 3 . Our results also show 

(6)BV = θo · 0.95 · DBH
1.45

· BH0.43
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Fig. 3 Diameter‑bole height and diameter‑bole volume relationships for our 23 tree species. Full lines stop at the maximum DBH observed 
for each species. Dotted lines extend the predictions to a DBH of 100 cm or an age of 100 years. Here we present the relationships predicted 
for spontaneous trees
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that spontaneous trees have a clear advantage over trans-
planted trees: they can reach their MLD up to 10 years 
earlier and produce up to 0.71 m 3 more over the same 
period.

4.1  A faster diameter growth in cocoa AFS than in forests 
or plantations, but a lower bole volume

Our results suggest trees can achieve greater annual 
growth rates in cocoa AFS than in forests or planta-
tions. Indeed, for trees with diameters ranging from 
10 to 70 cm, we predict growth rates varying from 0.13 
to 6.57 cm year−1 . In comparison, the average annual 
growth rates recorded in West African forests for trees 
of the same size are at the lower end of this range. In 
Côte d’Ivoire, Durrieu de Madron et al. (1998a, 1998b) 
found an average annual growth rate of 0.27 cm year−1 
for an evergreen forest and of 0.29 cm year−1 for a 
semi-deciduous forest, respectively. In Ghana, Alder 
(1989) found average annual growth rates ranging 

from 0.80 to 1 cm year−1 for pioneer species and rang-
ing from 0.40 to 0.50 cm year−1 for shade-tolerant spe-
cies. Similarly, in plantations in Côte d’Ivoire, Hérault 
et al. (2021) reported more than 35 years were needed 
to reach 50 cm in diameter, whereas we found only 15 
years are needed in cocoa AFS.

The faster growth of trees in cocoa AFS could be due 
to the greater availability of light in these systems than 
in forests (Pillet et  al. 2018) or plantations. This greater 
availability of light could lead trees to invest more in their 
diameter growth once they have emerged from the cocoa 
canopy (Rutishauser et  al. 2016; Ek 1974; King 1981). 
Besides light, stronger wind exposure in open-canopy 
agroforestry systems may cause trees to develop sturdier 
trunks due to wind stress. This could also contribute to 
the faster diameter growth in these systems (Jaouen et al. 
2010; Ennos 1997). Our results show maximum annual 
growth rates from the very first years ( Gmax = 8.74 cm 
year−1 for a mean Dopts = 0.87 cm), which is in line with 
the hypothesis of a priority given to diameter growth. 

Fig. 4 Bole volume and age at minimum logging diameter for our 23 species. Distemonanthus benthamianus is not represented as it does not reach 
its MLD within 100 years
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In contrast, in forests and plantations, closed systems 
where competition for light is strong, growth in height 
could be favoured (Ammer 2003; Prévosto and Balandier 
2007), to the expanse of diameter growth (Falster and 
Westoby 2003, 2005). Prioritizing diameter growth also 
enhances tree stability and resilience to wind, especially 
in resource-limited environments. As a result, trees tend 
to develop more conical boles rather than perfectly cylin-
drical ones, as evidenced by the low values of the volume 
model parameters ( β = 1.45 and γ = 0.43, compared to 
the expected β = 2 and γ = 1). These parameters indicate 
that as trees grow larger, their shape becomes increas-
ingly conical, reinforcing the hypothesis of prioritized 
diameter growth in AFS.

We therefore expect trees in forests or plantations to 
take longer to reach the same diameter than trees in 
cocoa AFS. However, for a same diameter, we expect 
trees in forests or plantations to have a greater bole 
volume than trees in cocoa AFS, due to their greater 
height. As a consequence of the power relationship 

between diameter and volume, the larger the trees, the 
greater this difference in volume. This is supported by 
our results. Indeed, we found trees in cocoa AFS can 
reach 1.25 m 3 at 50 cm DBH while in Côte d’Ivoire, 
Hérault et al. (2021) found trees in plantation can reach 
about 2.50 m 3 at the same DBH. At 100 cm DBH, we 
found trees in cocoa AFS could reach 3.53 m 3 while at 
this size, trees in plantation can reach a much higher 
volume of over 15 m 3.

The rapid diameter growth we observed in AFS 
could limit heartwood formation, which could affect 
wood quality in certain species. However, we cur-
rently lack the data to test this hypothesis. More 
generally, the quality of wood from cocoa AFS has 
yet to be assessed. Future studies could explore the 
link between growth rate and wood quality, as well 
as investigate the typical defects of wood in AFS and 
their impact on commercial value.

Finally, while our models are based on a robust data-
set (4634 trees), predictions for greater ages (> 83 years) 

Fig. 5 Advantage of spontaneous trees over (trans)planted trees in time to reach their MLD and in volume at MLD. Distemonanthus benthamianus 
is not represented as it does not reach its MLD within 100 years. Entandrophragma angolense is also excluded because, although spontaneous trees 
reach their MLD within 100 years, planted trees do not, making it impossible to calculate the advantages in age and volume
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and dimensions (> 143 cm in DBH) rely on inferred 
growth patterns rather than direct observations. These 
extrapolations should be interpreted with caution, and 
further validation with additional data particularly for 
older and larger trees is needed.

4.2  A lower wood production potential than in managed 
cocoa AFS

The wood production potential we found for trees 
in West African cocoa AFS proved to be lower than 
reported in other regions. Indeed, in Honduras for 
instance, trees can reach a volume of 0.60 to 2.40 m 3 in 
18 years (Ramírez-Argueta et al. 2022) while we predict 
a bole volume ranging from 0.41 to 1.56 m 3 at this age. 
Similarly, in Brazil, trees can reach a volume of 1.90 m 3 
at age 20 (Gama-Rodrigues et al. 2021) while we predict 
a volume ranging from 0.45 to 1.73 m 3 at this age. This 
difference could be attributed to the implementation of 
silvicultural practices (plantation of fast-growing species, 
thinning, pruning) in both Honduras and Brazil, whereas 
there is little or no tree management in Côte d’Ivoire. Our 
results are in line with this hypothesis. Indeed, although 
trees in Honduras grow faster in volume, trees in Côte 
d’Ivoire grow much faster in diameter: it only takes 5 to 
15 years for trees in Côte d’Ivoire to reach a DBH of 25 
cm while this DBH is reached in 13 to 18 years in Hon-
duras. This suggest trees in Honduras have greater bole 
heights which can be attributed to pruning.

4.3  A clear advantage of spontaneous trees over (trans)
planted trees

Our results show that spontaneous trees have an annual 
growth rate 10% higher than (trans)planted trees and a 
bole volume 43% greater for a same diameter. This latter 
result indicates spontaneous trees have a more cylindrical 
bole than (trans)planted trees. These better performances 
of spontaneous trees could be due to the fact that, hav-
ing remained in the same environment, they could have 
a more extensive root system, more efficient at absorb-
ing water and nutrients (Werden et  al. 2018). In con-
trast, transplanted trees experience disturbances in their 
root systems when moved to a new environment, nega-
tively impacting their growth (Brown 2004; Werden et al. 
2018). In addition, spontaneous trees, having remained in 
the same environment, could prioritise resource alloca-
tion to growth, unlike (trans)planted trees, which could 
allocate resources preferentially to defence and reproduc-
tion (Waring and Pitman 1985; Wunder et al. 2008; Fritts 
and Shatz 1975).

On the other hand, we found no difference between 
spontaneous and (trans)planted trees with regard to their 
diameter-bole height relationship. This is an expected 
outcome as self-pruning is controlled by light availability 

(Koike 1989; Mäkelä 1997; Sorrensen-Cothern et  al. 
1993). Both spontaneous and (trans)planted trees are 
therefore expected to maintain their lower branches at 
the same height, i.e., once above the cocoa canopy.

Finally, we acknowledge that species composition dif-
fers across origins, with some species common to all 
(27), while others are exclusively planted (2) or naturally 
regenerated (30). To account for these differences and 
sampling variability, our model includes both origin and 
species effects. This approach helps control for species 
composition differences and reduces bias in estimating 
the origin effect.

4.4  A high variability in species wood production potential 
due to differences in their ecology

Our results show a high variability in the wood produc-
tion potential of trees depending on species (Fig. 2). This 
variability could be explained by differences in species 
ecology. In an additional analysis (see Fig. S1 in Kouassi 
et al. (2024)), we found tree bole volume predicted at age 
25 is negatively correlated to wood density. This indi-
cates species with low wood density tend to grow faster 
than species with high wood density. This result is con-
sistent with previous findings showing a negative corre-
lation between wood density and growth speed in most 
biomes; species with low wood density having generally a 
low ability to tolerate competition and a low competitive 
effect on their neighbours (Kunstler et al. 2016).

4.5  Implication for tree management in cocoa AFS
The promotion of timber species in cocoa fields is crucial 
for the development of agroforestry, both for the sustain-
ability of cocoa production and for the diversification of 
farmers’ incomes (Blaser-Hart et  al. 2021; Notaro et  al. 
2021). Understanding the dynamics of wood production 
is therefore vital to develop management strategies max-
imising cocoa production as well as wood production, 
carbon sequestration, biodiversity, etc. In this study, we 
provide fundamental elements for developing a silvicul-
ture adapted for West African cocoa AFS. In particular, 
we estimated the time required for trees to reach their 
minimum logging diameter (MLD). This information 
can be used to define silvicultural cycles. We also provide 
allometric equations adapted to West African cocoa AFS 
to estimate bole volume. These equations can be used to 
assess tree commercial volumes and help estimate carbon 
stocks. Finally, our results suggest that natural regenera-
tion is a more effective strategy than planting for renew-
ing trees in cocoa AFS.

Besides, our results show trees in West African cocoa 
AFS have low bole height. This suggests pruning could be 
an effective lever for improving wood production. Indeed, 
by removing lower branches at an early stage, pruning 
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helps prevent defects in the wood, which increases the 
commercially valuable length of the bole. The cocoa sec-
tor should help implement strategies to support pruning 
in cocoa AFS, as farmers alone may not be able to cover 
the additional costs on their own (Esche et al. 2023).

Wood production in cocoa AFS inevitably leads to 
shading, which, beyond a certain threshold, can be det-
rimental to cocoa production (Blaser et al. 2018). Further 
research should therefore investigate the link between 
wood production and shading to identify the best trade-
off between wood and cocoa production.
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